

BIOHYDROGENERATOR GUIDE DE L'UTILISATEUR

ACTION CONTRE LA FAIM | ACTION AGAINST HUNGER | Bureau Régional pour l'Afrique de l'Ouest www.actionagainsthunger.org | www.actioncontrelafaim.org | www.accioncontraelhambre.org www.sigsahel.info

TABLE DES MATIERES

1	Intro	oduc	tion	. 4
2	Dor	née	s satellitaires	. 5
2	2.1	Fer	nêtre géographique	. 5
	2.2	Indi	ce de végétation NDVI	. 6
2	2.3	Pro	ductivité de matière sèche DMP	. 6
	2.4	Pet	its points d'eau SWB et points d'eau artificiels	. 8
3	DeC	Com	pressor	. 9
4	3.1	Stru	ucture des répertoires	. 9
	3.2	Déf	inition des sites de téléchargement et des identifiants	10
	3.2.	1	Données NDVI et DMP	10
	3.2.	2	Données SWB	11
	3.2.	3	Données FAPAR	11
	3.2.	4	AccessPassWord	11
	3.3	Déc	coupages vectoriels	12
4	3.4	Par	amétrage	13
	3.5	Exé	cution du programme	15
4	3.6	Fich	nier journal d'évènements	15
4	3.7	Exe	emples d'utilisations	16
	3.7.	1	Aiouts de nouvelles décades NDVI. DMP. SWB et FAPAR	16
	3.7.	2	Modification d'un découpage vectoriel	17
4	Bio	– Gene	erator	18
•	4.1	Prir	ncipes de fonctionnement	19
	4.1	1	Estimation de la quantité de biomasse produite	19
	4 1	2	Utilisabilité de la biomasse	19
	4 1	3	Accessibilité de la biomasse	21
	4 1	4	Filtrage des DMP intrant	21
	42	Utili	isation du module BioGenerator	22
	42	1	Initialisation et espace disque nécessaire	22
	4.2	2	Paramétrage	23
	4.2. 4.2	2 2	Exécution du programme	28
	ㅋ.८. 4 २	Fict	niers de sortie	20
-	ד.ט ג ו∕	1	Cartes de quantité de biomasse	20
	0. ∕/ 3	י י	Cartes d'anomalie de biomasse	31
	0. ∕/ 3	2 2	Cartes d'indice de vulnérabilité VI	22
	0. ∕/ 3	J ∕	Cartes de paramètres d'apalyse statistique	36
	4.3.	4 5	Drofils de production de biomasse et de l'indicateur de vulnérabilité	37
	4.3.	5	Sortion ou format voctorial	20
	4.3. 12	7	Sortion bruton	59 11
	4.3. 11	/ \/_	idation dos valours do hiomasso	41 12
•	+.4 15		malor d'utilization	40
4	+.0		สามุทธร น นแมรสแบบ	40

ACTION CONTRE LA FAIM | ACTION AGAINST HUNGER | Bureau Régional pour l'Afrique de l'Ouest www.actionagainsthunger.org | www.actioncontrelafaim.org | www.accioncontraelhambre.org www.sigsahel.info

	4.5.1	Création d'une carte d'anomalie de biomasse	46
	4.5.2	Création d'un profil temporel sur une entité administrative	47
	4.5.3	Création des cartes de biomasse accessible et inaccessible	48
5	HydroGe	enerator	51
5	.1 Prin	cipes de fonctionnement	51
	5.1.1	Calcul de la superficie d'eau	52
	5.1.2	Calcul de l'accessibilité à l'eau	52
5	.2 Utili	sation du module HydroGenerator	55
	5.2.1	Initialisation et espace disque nécessaire	55
	5.2.2	Liste des points d'eau	55
	5.2.3	Paramétrage	56
	5.2.4	Exécution du programme	58
5	.3 Fich	niers de sortie	59
	5.3.1	Cartes de présence moyenne d'eau	60
	5.3.2	Indice d'accessibilité moyenne à l'eau	62
	5.3.3	Cartes d'anomalies annuelles de l'indice d'accessibilité à l'eau	63
	5.3.4	Profils temporels de superficie	65
	5.3.5	Profils temporels d'anomalie annuelle de la présence d'eau	66
	5.3.6	Profils temporels d'anomalie annuelle de l'accessibilité à l'eau	68
	5.3.7	Sorties vectorielles	69
5	.4 Exe	mple d'utilisation	72
	5.4.1	Création de la carte d'anomalie d'accessibilité à l'eau	72
	5.4.2	Suivi du taux de remplissage de la marre d'eau	73
	5.4.3	Création d'une carte vectorielle statistique de présence d'eau	76
6	AutoRur)	78
6	.1 Prin	cipes de fonctionnement	78
6	.2 Par	amétrage	78
	6.2.1	Paramétrage général d'AutoRun	79
	6.2.2	Paramétrage de la fonction de recopie	79
6	.3 Exé	cution du programme	79
7	ClearAll		81
8	Conclus	ion	82
9	Contact		83
10	Bibliogra	aphie	84

1 Introduction

BioHydroGenerator est un regroupement de programmes développés et utilisés par Action Contre la Faim ACF pour son système d'alerte précoce de crise alimentaire sur le Sahel. Ces programmes, qui produisent des cartes de disponibilité en biomasse et en eau à destination des éleveurs, sont basés sur des données de télédétection satellitaire.

Ces cartes concernant la biomasse et l'eau donnent accès à des indicateurs de la vulnérabilité pour l'élevage, en particulier pour les éleveurs nomades de la région du Sahel. Cet élevage traditionnel, extensif et nomade de ces régions, nommé pastoralisme, est extrêmement sensible aux conditions climatiques et à la qualité de la saison de pluie, ou mousson ouest-africaine.

Ces programmes sont regroupés sous la forme de 3 modules séparés et complémentaires :

- DeCompressor (v2.5) : Ce module télécharge, prépare et vérifie la base de données satellitaires avant l'utilisation par les autres modules.
- BioGenerator (v5.4) : Ce module calcule la production de biomasse et établit les cartes des anomalies annuelles de production et de l'indice de vulnérabilité.
- HydroGenerator (v4.3) : Ce module calcule l'indice d'accessibilité à l'eau et établit des cartes des anomalies annuelles de présence d'eau.

L'objectif de ces outils est principalement de fournir un état des ressources en pâturage à disponibilité des éleveurs à la fin de la saison de pluies, car c'est principalement sur ces réserves que les éleveurs devront alimenter leurs animaux jusqu'à la saison des pluies suivante.

Les ressources en eau, données par la détection en temps réel des points d'eau de surface, peut être suivi durant la saison sèche.

Ce document à destination des utilisateurs explique tout d'abord les aspects théoriques, et ensuite décrit l'utilisation de ces outils. Quelques exemples pratiques montrent les étapes à suivre, depuis le téléchargement des données, jusqu'à l'élaboration des cartes et des profils temporels.

2 Données satellitaires

Les données satellitaires utilisées proviennent des acquisitions du capteur VEGETATION embarqué sur les satellites SPOT-4 (1998-2013), SPOT-5 (2002-2014) et PROBA-V (depuis 2014).

Les produits issus de ces acquisitions satellitaires sont fournis par le VITO (Institut flamand de recherche technologique), au travers le projet européen Copernicus piloté par la commission européenne et le JRC (*Joint Research Centre*).

Ces produits satellitaires sont stockés sous forme de synthèses décadaires, c'est-àdire concernant des périodes de 10 jours, et à une résolution spatiale de 1×1 km. Les produits sont disponibles au téléchargement en temps réel, généralement le lendemain du dernier jour de la décade. Il y a trois décades pour chaque mois : la première décade couvre la période du 1^{er} au 10^{ème} jour, la seconde décade celle du 11^{ème} au 20^{ème} jour, la troisième du 21^{ème} au dernier jour du mois. Il y a ainsi 36 décades par année.

2.1 Fenêtre géographique

La fenêtre géographique concerne l'ensemble de l'Afrique Sub-Saharienne, et la Figure 1 montre son extension spatiale. Le Tableau 1 donne les coordonnées géographiques des limites de la fenêtre spatiale. Cette fenêtre spatiale est appelée *Sub_Sahara*.

Fenêtre	Haut-Gauche	Bas-Droit	Taille (pixels×lignes)
Sub_Sahara	-18.000°E 27.375°N	52.000°E -5.02678611°N	7841 × 3630

Tableau 1 – Coordonnées du centre des pixels des coins de la fenêtre géographique

L'ensemble des calculs des différents modules se fait sur cette fenêtre et à la résolution initiale des produits satellitaires de 1×1 km. L'ensemble des sorties images et vectorielles se fait également sur tout ou partie de cette fenêtre.

Figure 1 – Classification GLOBCOVER 2009 sur la fenêtre géographique *Sub-Sahara*

2.2 Indice de végétation NDVI

Le NDVI (*Normalized Difference Vegetation Index*), ou indice normalisé différentiel de végétation, est un indice sans dimension qui est un indicatif de la densité de végétation et est calculé en comparant la lumière solaire visible rouge (p_R) et proche infrarouge (p_{PIR}) reflétée par la surface (réflectance) (Baret *el al.*, 2006).

$$NDVI = \frac{\rho_{PIR} - \rho_{R}}{\rho_{PIR} + \rho_{R}}$$
(1)

2.3 Productivité de matière sèche DMP

L'estimation de la quantité de production annuelle de biomasse se calcul comme le cumul sur la saison de croissance des produits DMP délivrés par le VITO à partir d'un algorithme développé par le JRC.

Les DMP sont une quantification de la production instantanée de biomasse exprimée en kg de matière sèche par hectare et par jour (kg.ha⁻¹.jour⁻¹). La production de matière sèche, liée à la production primaire nette NPP (*Net Primary Production*), est estimée par l'utilisation du modèle de Monteith (1972) qui s'exprime ainsi :

$$DMP = R_G \times \varepsilon_i \times \varepsilon_c \times \varepsilon_b \times 10000$$
 (2)

Où :

 R_{G} (J.m^-2.jour^-1) est le rayonnement solaire incident, issu de cartes de rayonnement.

ε_i est l'efficience d'interception du rayonnement par la végétation aussi appelé fAPAR (*Fraction of Absorbed Photosynthetically Active Radiation*), obtenue par régression linéaire du NDVI suivant un calibrage heuristique (Eerens *et al.*, 2000).

$$\varepsilon_i = fAPAR = A + B \times NDVI$$
 (3)

 ϵ_c est la fraction de PAR (*Photosynthetic Active Radiation*) du rayonnement solaire incident,

 ϵ_b [kgMS.J_{PAR}⁻¹] est l'efficience de conversion du PAR en matière sèche, elle est fonction de la température de l'air. Suivant Veroustraete *et al.* (2002), ϵ_b suit une fonction en cloche et présente un maximum pour 22°C pour se rapprocher de 0 pour des valeurs de températures inférieures à 0°C et supérieures à 40°C. La température est obtenue par réanalyse des données météorologiques.

10000 est le facteur de conversion des m² vers les hectares.

2.4 Petits points d'eau SWB et points d'eau artificiels

Les petites surfaces en eau sont comprises ici au sens de la résolution de l'instrument, i.e. des surfaces plus ou moins couverte d'eau ayant une dimension d'environ 1km².

Les produits SWB (*Small Water Bodies*), accessibles sous forme de décades à 1×1 km de résolution, informent de manière booléenne de la présence d'eau de surface. Les SWB ne donnent par contre pas d'information sur la profondeur et sur la qualité de l'eau.

Afin d'augmenter la sensibilité, les zones de végétation humide et les zones mixtes détectées par les SWB sont également considérées comme des zones d'eau de surface.

Pour compléter l'information sur l'eau de surface fournie par les SWB, la liste des points d'eau artificiels et forages est rentrée par le fichier Param/Bores_List.txt. Pour chacun des points d'eau, la longitude Est, la latitude Nord et un nom sont donnés. Cette liste peut optionnellement être ensuite intégrée au calcul de pondération de la biomasse accessible par la distance à l'eau. Cette liste n'est pas exhaustive de l'ensemble des points d'eau, mais concerne, pour l'instant, uniquement le nord du Mali.

LON	LAT	NOM
-3.855556011	16.319999695	1km nord village
-4.389166832	15.797778130	20m de l'école
-0.26444441	16.715278625	A cote du CS
-2.168888807	15.644721985	A l'est
2.414722204	16.593610764	A l'ouest de l'école
-0.014166667	16.355833054	A proximité de la route Bourem

Figure 3 – Positions des points d'eau artificiels déjà incorporés dans la liste

ACTION CONTRE LA FAIM | ACTION AGAINST HUNGER | Bureau Régional pour l'Afrique de l'Ouest www.actionagainsthunger.org | www.actioncontrelafaim.org | www.accioncontraelhambre.org www.sigsahel.info

3 DeCompressor

DeCompressor est un programme qui a pour fonction de télécharger et de préparer les données préalablement à leur utilisation par les programmes BioGenerator et HydroGenerator.

Les fonctions de DeCompressor sont de vérifier l'intégrité de la base de données satellitaires des champs DMP, NDVI, et SWB, de télécharger et de décompresser les nouvelles décades disponibles, et de préparer les fichiers vectoriels à leur utilisation par les programmes BioGenerator et HydroGenerator.

DeCompressor permet aussi de télécharger les données satellitaires du champ FAPAR utilisé pour le filtrage des données DMP intrant au BioGenerator.

A partir de la première décade 2014, et le passage à Proba-V, les données DMP, NDVI et FAPAR sont disponibles aux résolutions 300m et 1km. La résolution 1km étant amenée à être abandonnée, DeCompressor offre la possibilité de télécharger les données de source 300m, à partir d'une décade donnée, avant de les rééchantillonner à 1km. Pour chacun des champs, Le changement de résolution se fait par calcul d'une moyenne simple suivant une fenêtre 3x3 et en considérant valides les pixels 1km ayant un minimum de 5/9 pixels 300m valides.

L'exécution de DeCompressor préalable à l'utilisation des modules BioGenerator et HydroGenerator est nécessaire dans trois cas :

- Pour le téléchargement nouvelles décades DMP, NDVI, SWB ou FAPAR et la mise à jour de la base de données
- En cas de doute sur l'intégrité de la base de données
- Après la modification des fichiers de découpe vectorielle ADM_n.shp ou GEO_n.shp et WATER.shp
- Après la modification du fichier de masque de la zone d'intérêt des rasters MASK.shp

3.1 Structure des répertoires

Il est primordial de respecter la structure et la hiérarchie des répertoires et des fichiers. Les programmes des modules DeCompressor, BioGenerator et HydroGenerator doivent être placés à la racine du répertoire de travail ou répertoire racine. Les programmes fonctionnant en position relative, l'ensemble du répertoire racine peut être déplacé librement.

Figure 4 – Organisation du répertoire racine

3.2 Définition des sites de téléchargement et des identifiants

Le téléchargement des données NDVI, DMP se fait, au choix, à partir du site FTP du VITO ou du DataPool Copernicus, tandis que le téléchargement des données SWB ne peut se faire qu'à partir du DataPool Copernicus. Les adresses des sites FTP et DataPool ainsi que les identifiants Login et mot de passe sont préalablement rentrés dans le module DeCompressor. Il est tout de fois possible de modifier les adresses des sites FTP et DataPool et les identifiants à l'aide du programme AccessPassWord (voir section 3.2.4).

3.2.1 Données NDVI et DMP

Le VITO fourni à Action Contre La Faim – Espagne ACF-E une version spécifique des produits décadaires DMP et NDVI. Ces données, présentes sous forme de décades, sont rendues disponibles au téléchargement sur le site FTP du VITO. Les identifiants d'accès à ce site FTP sont confidentiels à ACF-E, mais préalablement enregistré dans le programme DeCompressor (Tableau 5).

Il est possible de choisir la source standard des produits DMP et NDVI accessibles sur le DataPool Copernicus (voir section 3.4). Lors de l'exécution, DeCompressor compare les numéros de versions des produits et télécharge la version disponible sur le DataPool si elle est plus récente que celle déjà téléchargée. Dans le cas de sélection de cette source de données, la taille des fichiers à télécharger correspondant au globe entier, le temps de téléchargement est beaucoup plus important, le stockage sur le disque local est également plus important (voir Tableau 2).

Produit	Source	Version	Résolution	Туре	Chemin	Prefix	Taille approx.
	FTP	V1	1km	.zip img+hdr	ACF/DMP	DMP_	20 Mo
DMP	V2		1km	NHODE	Vegetation/Dry_Matter_Productivity/DMP_1km_V2	1.	255 Mo
	DataPool	V1	300m	NetCDF	Vegetation/Dry_Matter_Productivity/DMP_300m_V1	c_gis_	1.8 Go
	FTP	V 1	1km	.zip img+hdr	dr ACF/NDVI		13 Mo
NDVI	DataDaal	V2.2	1km		Vegetation/Indicators/NDVI_1km_V2	a ala	200 Mo
	DataPool	V1	300m	NeiCDF	Vegetation/Indicators/NDVI_300m_V1	c_gis_	1.0 Go

Tableau 2 – Informations des fichiers DMP et NDVI de téléchargement

3.2.2 Données SWB

Les données SWB sont téléchargeables uniquement via la source DataPool Copernicus. Le Tableau 3 donne les informations utilisées pour le téléchargement de ces fichiers.

Produit	Source	Version	Résolution	Туре	Chemin	Prefix	Taille approx.
SWB	DataPool	V1	1km	.zip Geotiff	Water/Water_Bodies/WB_Africa_V1	g2_BIOPAR_	10 Mo

Tableau 3 – Informations des fichiers SWB de téléchargement

3.2.3 Données FAPAR

Les données FAPAR sont téléchargeables uniquement via la source DataPool Copernicus. Le Tableau 4 donne les informations utilisées pour le téléchargement de ces fichiers.

Produit	Source	Version	Résolution	Туре	Chemin	Prefix	Taille approx.
FAPAR	DeteDe el	V2	1km	NaCDE	Vegetation/Properties/FAPAR_1km_V2	1.	420 Mo
	DataPool	V1	300m	NetCDF	Vegetation/Properties/FAPAR_300m_V1	c_gis_	2.5 Go

Tableau 4 – Informations des fichiers FAPAR de téléchargement

3.2.4 AccessPassWord

Le programme AccessPassWord, accessible dans le répertoire Lib/Utils/ permet de modifier les adresses des sites FTP et DataPool ainsi que les identifiants et mots de passe. Les mots de passes sauvegardés sont cryptés. Il convient d'être prudent dans l'utilisation de AccessPassWord et la modification des informations de connexion car ces modifications sont irréversibles.

Données	Adresse	Туре	Login	Mot de passe
DMP NDVI	cvbftp.vgt.vito.be	FTP	meteo	******
DMP NDVI SWB	http://land.copernicus.vgt.vito.be/PDF/	DataPool	ACF_User	******

Tableau 5 – Adresses et identifiants initiaux pour les téléchargements

3.3 Découpages vectoriels

Six fichiers de découpages vectoriels sont utilisés par les programmes BioGenerator et HydroGenerator. Ces fichiers se présentent sous la forme de *shapefile* (.shp) et sont initialement placés dans le répertoire Shape/

Les trois premiers fichiers nommés ADM_0, ADM_1 et ADM_2 correspondent respectivement aux découpages administratifs aux niveaux pays, régions et départements. Les trois suivant GEO_3, GEO_4 et GEO_5 sont libres d'être modifiés par l'utilisateur.

Pour modifier un fichier, il suffit de sauvegarder le nouveau fichier *shapefile* sous le nom cible GEO_3.shp, GEO_4.shp ou GEO_5.shp en remplaçant le fichier précédent. Il est à noter que les fichiers ADM_n.shp peuvent également être modifiés de la même manière, mais il est conseillé de conserver les découpages administratifs déjà existants.

Le fichier vectoriel WATER.shp est utilisé exclusivement par HydroGenerator et définit les polygones pour le suivi de l'évolution temporelle au pas de temps décadaire des taux remplissage des points d'eau.

Le fichier vectoriel MASK.shp définit le découpage et le masque des fichiers raster *geotiff* produits par BioGenerator et HydroGenerator. Ce fichier MASK.shp definit la zone d'intérêt. Dans le cas de l'activation de l'option de masque, les fichiers rasters de sortie de BioGenerator et HydroGenerator sont découpés et masqués. Le découpage se fait suivant extension spatiale du ou des polygones du fichier MASK, dans la limite de l'extension maximale de la fenêtre Sub-Sahara. Une valeur spéciale de masque est appliquée aux pixels qui sont à l'extérieur des zones couvertes d'un polygone dans le fichier MASK (voir sections 4.3 et 5.3).

Les nouveaux fichiers *shapefile* doivent contenir uniquement des polygones avec une table attributaire. Dans cette table attributaire, si une colonne NAME existent, alors ses valeurs seront reprises dans les tableaux et tables attributaires en sortie des programmes BioGenerator et HydroGenerator, dans le cas contraire, une colonne NAME est créée avec un indice incrémental pour chacun des polygones du fichier.

Description	Nom	Répertoire	Fichier
Admin Niveau 0	ADM_0		ADM_0.shp
Admin Niveau 1	ADM_1		ADM_1.shp
Admin Niveau 2	ADM_2		ADM_2.shp
Découpe Utilisateur 1	GEO_3	Shana/	GEO_3.shp
Découpe Utilisateur 2	GEO_4	Shape	GEO_4.shp
Découpe Utilisateur 3	GEO_5		GEO_5.shp
Superficies d'eau	WATER		WATER.shp
Masque de sortie	MASK		MASK.shp

Tableau 6 – Fichiers de découpage vectoriel

3.4 Paramétrage

Les paramètres du module DeCompressor sont accessibles et modifiables via le fichier Param/DeCompressor_Param.txt.

```
Parametres DeCompressor
```

0 1	Forcage Garde (Defaut : 0 1)
1	Source_DMP-NDVI (1 : FTP ; 2 : DataPool ; Defaut : 1)
0	Telecharge FAPAR (Defaut : 0)
1999 1	Premiere decade (Defaut : 1999 1)
2014 1	Source_300m (Defaut : 2014 1)

Forçage (0 : Désactivé, 1 : Activé)

Ce paramètre active ou désactive le forçage au téléchargement. Si le forçage est activé, alors l'ensemble des données disponibles sur les sites FTP et DataPool sont téléchargées et remplacent les données déjà présentes localement. Cette option est utile pour forcer le téléchargement complet de la base de données par exemple dans le cas d'une nouvelle version des produits.

Garde (0 : Désactivé, 1 : Activé)

Ce paramètre active ou désactive la sauvegarde des fichiers téléchargés. Si la sauvegarde est activée, les fichiers originaux compressés sont stockés localement. Si la sauvegarde est désactivée, les fichiers sont effacés après téléchargement, décompression et découpage.

Attention : La sauvegarde des fichiers originaux peut être volumineuse dans le cas de l'utilisation des sources de données DataPool. Les Tableau 2, Tableau 3 et Tableau 4 donnent la taille approximative des fichiers originaux de téléchargement.

Source_DMP-NDVI (1 : FTP ; 2 : DataPool)

Ce paramètre sélectionne la source de données pour les produits DMP et NDVI. Le passage d'une source de données à l'autre nécessite un effacement complet de la base de données de téléchargement réalisé à l'aide du programme ClearAll (voir section 7).

Telecharge FAPAR (0 : Désactivé, 1 : Activé)

Ce paramètre sélectionne active ou désactive le téléchargement du champs FAPAR (Fraction of Absorbed Photosynthetically Active Radiation). Ce champ peut être utilisé pour le filtrage des valeurs de DMP intrant au BioGenerator (voir section 4.1.4). Le téléchargement du FAPAR se fait uniquement à partir du DataPool.

Premiere decade (année décade)

Ce paramètre détermine l'année et le numéro de décade (Tableau 7) à partir desquels DeCompressor commence la recherche de données

Source_300m (année décade)

Ce paramètre détermine l'année et le numéro de décade (Tableau 7) à partir desquels DeCompressor sélectionne la source de données à 300m. Cette fonctionnalité est active uniquement si la source de données sélectionnée est « DataPool ». Une valeur négative pour l'année (-1 0) désactive la fonctionnalité et l'ensemble de la recherche se fait sur les données à 1km.

3.5 Exécution du programme

L'installation de MATLAB Compiler Runtime 2016a est nécessaire avant l'exécution du programme. Si nécessaire, il convient d'exécuter le programme d'installation : Libs/Utils/MCR_R2016a_win64_installer.exe

Le programme DeCompressor se lance simplement en double-cliquant sur le fichier DeCompressor.exe

La fenêtre d'exécution montre l'état d'avancement du programme pour chacune des étapes. A la fin de l'exécution est inscrit le nombre de fichiers vectoriels convertis (Tableau 6) et le nombre de décades téléchargées et décompressées pour chacun des champs DMP, NDVI et SWB.

Figure 5 – Fenêtre d'exécution de DeCompressor

3.6 Fichier journal d'évènements

Suite à l'exécution du programme DeCompressor, dans le fichier texte Log/DataLog.txt est inscrit l'ensemble des évènements concernant la détection et la décompression des décades des produits DMP, NDVI et SWB.

La date et l'heure sont indiquées en première ligne, et ensuite l'ensemble des événements survenus pour le traitement des données DMP, NDVI, SWB et FAPAR. Si une archive est corrompue et sa décompression impossible, cela sera signalé dans le fichier journal d'évènement.

Il est à noter que ce fichier n'est jamais effacé, et que chaque nouvelle exécution de DeCompressor rajoute une écriture.

Exemple d'écriture dans le fichier journal d'évènements Log/DataLog.txt après la conversion d'un fichier *shapefile* ADM_0 ainsi que détection, le téléchargement et la décompression de deux nouvelles décades DMP, NDVI, SWB et FAPAR:

```
15/05/2020 06:33:24
Shapefile Debut
Shapefile Fin
DMP Debut
15/05/2020 07:02:49 - DMP 20200421 telechargement source DataPool reussi tentative 1
15/05/2020 07:02:54 - DMP_20200421 decompression reussie tentative 1
15/05/2020 07:06:14 - DMP_20200501 telechargement source DataPool reussi tentative 1
15/05/2020 07:06:18 - DMP_20200501 decompression reussie tentative 1
DMP Fin
NDVI Debut
15/05/2020 07:34:47 - NDVI 20200421 telechargement source DataPool reussi tentative 1
15/05/2020 07:34:49 - NDVI 20200421 decompression reussie tentative 1
15/05/2020 07:38:03 - NDVI_20200501 telechargement source DataPool reussi tentative 1
15/05/2020 07:38:06 - NDVI_20200501 decompression reussie tentative 1
NDVI Fin
SWB Debut
15/05/2020 08:03:44 - SWB_20200421 telechargement source DataPool reussi tentative 1
15/05/2020 08:03:52 - SWB 20200421 decompression reussie tentative 1
15/05/2020 08:04:05 - SWB 20200501 telechargement source DataPool reussi tentative 1
15/05/2020 08:04:12 - SWB 20200501 decompression reussie tentative 1
SWB Fin
FAPAR Debut
15/05/2020 08:43:56 - FAPAR 20200421 telechargement source DataPool reussi tentative 1
15/05/2020 08:43:58 - FAPAR_20200421 decompression reussie tentative 1
15/05/2020 08:49:36 - FAPAR_20200501 telechargement source DataPool reussi tentative 1
15/05/2020 08:49:38 - FAPAR 20200501 decompression reussie tentative 1
FAPAR Fin
LOG Fin
* * * * * * * * *
```

3.7 Exemples d'utilisations

Ce paragraphe présente deux exemples d'utilisation du programme DeCompressor. Le premier exemple concerne l'ajout de nouvelles décades à la base de données. Le second exemple montre incorporation d'un nouveau découpage vectoriel comme référence.

3.7.1 Ajouts de nouvelles décades NDVI, DMP, SWB et FAPAR

Les décades NDVI, DMP, SWB et FAPAR sont disponibles au téléchargement généralement dans les 24 heures suivant la fin de la décade.

 <u>Exécution du programme DeCompressor</u>: L'exécution du programme se fait tel que décrit dans la section 3.5. L'affichage rappelle le nombre de décades détectées, téléchargées et convenablement décompressées. Le fichier journal (section 3.6) informe l'utilisateur des erreurs survenues le cas échéant.

3.7.2 Modification d'un découpage vectoriel

L'utilisation d'un nouveau découpage vectoriel par les modules BioGenerator et HydroGenerator est possible. Les 3 premiers découpages ADM_0, ADM_1 et ADM_2 correspondent aux découpages administratifs, les trois suivants, GEO_3, GEO_4 et GEO_5 sont libres.

- <u>Sauvegarde d'un nouveau découpage :</u> Le nouveau fichier vectoriel doit être sauvegardé sous le nom GEO_n.shp (n = 3, 4 ou 5) dans le répertoire décrit en section 3.3. Le fichier vectoriel doit être un *shapefile*, contenant uniquement des polygones et utilisant l'ellipsoïde de référence WGS-84. Si dans la table attributaire les colonnes NAME existe, alors elle est reprise dans les champs de sorties des programmes, sinon, un indice incrémental sera assigné. Seuls les polygones à présent à l'intérieur de la fenêtre géographique (Figure 1) sont pris en compte.
- 2. <u>Exécution du programme DeCompressor</u> : L'exécution du programme se fait tel que décrit dans la section 3.5. L'affichage rappelle le nombre de nouveaux fichiers vectoriels découverts et convenablement intégrés.

4 BioGenerator

BioGenerator est un outil capable de générer des cartes annuelles de la quantité de production de biomasse et d'anomalies de quantité de production de biomasse à partir des données issues des acquisitions du capteur VEGETATION embarqué sur la série des satellites SPOT à laquelle succède le satellite PROBA-V.

Dans sa version v5.4, le BioGenerator conserve le même algorithme basé sur le cumul annuel des produits DMP (*Dry Matter Productivity*), et le calcul de l'anomalie par rapport à l'année moyenne ou année type. Le document « Mesure de la quantité de biomasse sur la zone Sahélienne Mali-Niger par télédétection » (Fillol, 2007) explique dans le détail la méthodologie utilisée pour l'estimation de la biomasse.

L'extension spatiale du BioGenerator concerne l'ensemble de l'Afrique Subsaharienne suivant la fenêtre spatiale donnée par la Figure 1.

Ce chapitre explique la mise en place et l'utilisation du BioGenerator, établit des éléments de comparaison avec des mesures de terrain pour la validation des quantités de biomasse, et termine avec quelques exemples d'utilisation.

Les améliorations notables de cette cinquième version du BioGenerator sont :

- La possibilité de prise en compte de l'accessibilité de la biomasse par la distance aux points d'eau de surface détectés par télédétection, et aux points d'eau artificiels de position connue
- La possibilité de prise en compte du caractère utilisable de la biomasse
- Le calcul de cartes d'analyses statistiques (tendance, écart type)
- Le calcul d'un indicateur paramétrable de vulnérabilité basé sur la situation des années passées récentes
- L'adoption du format de sortie geotiff en 32 bits réel avec possibilité de compression
- L'ajout d'un filtre spatial paramétrable pour l'ensemble des cartes de sortie
- Le calcul des quantités de production de biomasse totale, pour chaque année, suivant les découpes administratives de niveaux 0 à 2, et des découpes définies par l'utilisateur
- Les sorties au format géographique vectoriel shapefile
- Le découpage suivant le masque de la zone d'intérêt des sorties de fichiers rasters
- Le filtrage des valeurs de DMP intrant suivant des seuillages sur le NDVI et le FAPAR

Comme pour la version précédente, la possibilité est donnée à l'utilisateur de gérer la période d'intégration en définissant les décades de début de fin de période de croissance (saison des pluies). Ceci est particulièrement utile dans le cas de l'Afrique de l'Est où il existe deux saisons de pluies annuelles distinctes.

4.1 Principes de fonctionnement

Ce chapitre décrit la méthodologie employée pour l'estimation de la quantité de biomasse produite annuellement à partir de données de télédétection satellitaire, ainsi que la pondération pour l'utilisabilité et l'accessibilité à l'eau.

4.1.1 Estimation de la quantité de biomasse produite

La quantité de matière sèche annuelle produite est calculée par le cumul sur la saison de croissance des valeurs de productivité quotidienne données par les DMP décadaires. Le résultat obtenu est la production totale sur l'année, ou rendement à l'hectare, et exprimée en kg de matière sèche à l'hectare (kg.ha⁻¹).

$$BiomasseTotale_{Année}(i,j) = \frac{365.25}{36} \times \sum_{Décade(Année)} DMP_{Décade}(i,j)$$
(4)

Il est important de souligner que le système donne une estimation de la production de biomasse sur la période d'intégration. Cette valeur de production ne doit pas être confondue avec la quantité de biomasse effectivement présente.

4.1.2 Utilisabilité de la biomasse

Seule une fraction de la biomasse totale produite est utilisable pour l'élevage, de par le caractère appétible des espèces végétales et la partie perdue par décomposition, piétinement, incendie, etc.

La fraction de biomasse effectivement utilisable pour l'élevage est donnée par un facteur appelé facteur de conversion (5).

$$BiomasseUtilisable_{Année}(i,j) = BiomasseTotale_{Année}(i,j) \times FacteurConversion(i,j)$$
(5)

La littérature donne un facteur de conversion évoluant de 30% en climat soudanien (sud isohyète 600 mm) à 50% en climat sahélien (nord isohyète 400 mm) (Toutain et Lhoste, 1978).

Le facteur de conversion est calculé en fonction de la carte de précipitation produite par WorldClim - Global Climate Data (www.worldclim.org).

Figure 6 – Evolution du facteur de conversion d'utilisabilité en fonction de la précipitation. Exemple pour un transect Sud-Nord à 0° de longitude.

(WorldClim – Global Climate Data)

BioGenerator permet de paramétrer les valeurs des facteurs de conversion initialement de 30% en climat soudanien et de 50% en climat sahélien.

4.1.3 Accessibilité de la biomasse

La biomasse accessible est l'expression de la production de biomasse pondérée par la distance au plus proche point d'eau détecté (eau de surface) ou connu (puis, forage). L'estimation de l'accessibilité est uniquement basée sur les paramètres spatiaux de distance et ne prends pas en compte les autres aspects d'accessibilité (financiers, frontières naturelles, frontières administratives, etc.).

La présence d'eau de surface est donnée par les produits issus de la télédétection SWB distribués par le VITO. Comme pour les produits DMP, les produits SWB se présentent sous forme de décades, et la résolution est d'environ 1×1 km.

Les puits et points d'eau artificiels dont la position est connue peuvent être inclus tel que décrit en section 2.4.

La pondération de la production de biomasse se fait par la création d'un champ de pondération de présence d'eau pour chacune des décades SWB disponibles. La fonction de pondération, une gaussienne fonction de la distance au point d'eau, est décrite dans le paragraphe d'explication de calcul d'accessibilité à l'eau (section 5.1.2).

4.1.4 Filtrage des DMP intrant

La seconde version des DMP 1km V2 présente un défaut et donne une fausse production de biomasse durant la saison sèche et sur les zones désertiques. Afin de filtrer cette production, deux filtres sont disponibles.

Le premier filtre réétale les valeurs de DMP en fonction des valeurs de FAPAR associées et suivant une réponse en arc de cercle entre deux valeurs minimale FAPAR_Seuil_Bas et maximale FAPAR_Seuil_Haut du filtre (Figure 8).

ACTION CONTRE LA FAIM | ACTION AGAINST HUNGER | Bureau Régional pour l'Afrique de l'Ouest www.actionagainsthunger.org | www.actioncontrelafaim.org | www.accioncontraelhambre.org www.sigsahel.info Le second filtre est un seuil sur les valeurs de NDVI. En dessous de la valeur de seuil NDVI_Seuil, le DMP est fixé à 0 et il est inchangé au dessus (Figure 9).

Figure 9 – Réponse du filtre sur le DMP en fonction du NDVI

Les filtres sont activables indépendamment l'un de l'autre (section 4.2.2).

Pour l'utilisation des DMP 1km V1, il est recommandé de désactiver les deux filtres.

Pour l'utilisation des DMP 1km V2, il est recommandé d'activer les deux filtres avec pour valeurs : FAPAR_Seuil_Bas=0 ; FAPAR_Seuil_Haut=0.05 ; NDVI_Seuil=0.15

4.2 Utilisation du module BioGenerator

Ce chapitre explique le paramétrage et comment exécuter le programme.

4.2.1 Initialisation et espace disque nécessaire

La première étape consiste à télécharger et préparer les données DMP, NDVI et SWB si la fonction d'accessibilité est activée. Cette étape est expliquée en section 3.2. Le module DeCompressor doit ensuite être exécuté afin de compléter la base de données (voir section 3.5).

L'espace disque nécessaire à l'exécution de BioGenerator est d'environ 10 Go par année de données. Il convient à l'utilisateur de vérifier que l'espace disque libre est suffisant avant l'exécution.

4.2.2 Paramétrage

Ces paramètres sont accessibles et modifiables via le fichier Param/BioGenerator_Param.txt.

Par	amet	tres BioGene:	rator
0	2	3	Filtre_Flag Nombre_iterations Taille_Filtre (Defaut : 0 2 3)
10	9		Decade_Debut_Integration Decade_Fin_Integration (Defaut : 10 9)
0	15		Production_Min Production_Seuil (Defaut : 0 15)
Ο.	15		NDVI_Seuil (Defaut : 0.15)
Ο.	00	0.05	FAPAR_Seuil_Bas FAPAR_Seuil_Haut (Defaut : 0.00 0.05)
0	30	50	Utilisable_Flag Conversion_Facteur_F0 Conversion_Facteur_F1 (Defaut : 0 30 50)
50			Alpha_VI (Defaut : 50)
0	30	100 30 1	Access_Flag Dist_Max Facteur_P0 Facteur_P1 Forages_Flag (Defaut : 0 30 100 30 1)
0	1		Masque Profils (Defaut : 0 1)
1	1		Optimisation Compression (Defaut : 1 1)
0	0		Sorties_Raw Garde_Ancien (Defaut : 0 0)

En cas d'absence du fichier, ou d'erreur d'écriture du format, un message d'erreur est signalé lors du lancement du BioGenerator, et l'exécution est bloquée.

Les paramètres accessibles par l'utilisateur sont :

Les paramètres de la fonction de lissage spatial de l'ensemble des cartes de sorties du BioGenerator. Le filtre utilisé est un filtre moyen sur une fenêtre glissante circulaire. Ce filtre affecte au pixel central la moyenne de l'ensemble des pixels contenus dans la fenêtre définie par son rayon en nombre de pixel. Les paramètres du filtre sont la taille et le nombre d'itérations (nombre de passes). Ce filtrage spatial des cartes de sortie permet d'améliorer l'aspect visuel en limitant, dans une certaine mesure, les variations locales brusques et en éliminant le bruit spatial mais au détriment de la résolution. Si pour une étude à l'échelle locale le filtre doit être préférablement désactivé, il peut être activé pour une étude plus globale à l'échelle régionale. Il est préférable de privilégier un nombre de passes élevé (2 à 5 passes) avec une taille de fenêtre raisonnable (3 à 7 pixels).

<u>Filtre_Flag</u> (0 : Désactivé, 1 : Activé) Ce paramètre active ou désactive le filtre.

pixel.

<u>Nombre_Iteration</u> (Valeur entière entre 1 et 25) Ce paramètre donne le nombre de passes du filtre.

<u>Taille_Filtre</u> (Valeur entière entre 1 et 11) Ce paramètre donne le rayon de la fenêtre glissante circulaire en nombre de La période d'intégration sur le cycle annuel définie par la première et la dernière décade. Les valeurs rentrées correspondent au numéro de décade compris entre 1 et 36, la correspondance avec les dates est donnée par le Tableau 7. Dans le cas où la valeur de la décade de fin d'intégration est inférieure à celle de début d'intégration, l'intégration se fait jusqu'à la décade indiquée de l'année suivante. Par défaut la période d'intégration couvre la saison de croissance sur le Sahel et l'Afrique de l'Ouest soumis à la mousson Ouest-Africaine soit début avril (Decade_Debut_Integration=10) à fin mars (Decade_Fin_Integration=9). Mais, par exemple, si l'utilisateur s'intéresse à une analyse de la production de biomasse sur le mois de septembre uniquement, les paramètres Decade_Debut_Integration et Decade_Fin_Integration devraient être fixés respectivement à 25 et 27.

Dans le cas où la valeur Decade_Debut_Integration est rentrée à 0, alors la période d'intégration est définie sur le nombre de décades inscrit dans Decade_Fin_Integration et jusqu'à la dernière décade DMP disponible. Par exemple : si Decade_Debut_Integration=0 et Decade_Fin_Integration=9, l'intégration se fait sur 9 décades depuis les 9 décades précédant la dernière décade DMP déjà téléchargée.

Decade_Debut_Integration (Valeur entière entre 0 et 36)

Ce paramètre donne la décade de début d'intégration. La valeur 0 dans le cas d'une intégration antérieure à la dernière décade téléchargée.

Decade_Fin_Integration (Valeur entière entre 1 et 36)

Ce paramètre donne la décade de fin d'intégration. Si la valeur 0 est inscrite dans le paramètre Decade_Debut_Integration, alors Decade_Fin_Integration est le nombre de décades intégrées jusqu'à la dernière décade téléchargée.

Numéro Décado	Date	Numéro Décado	Date	Numéro Décado	Date
Decaue		Decaue		Decaue	
1	01/01	13	01/05	25	01/09
2	11/01	14	11/05	26	11/09
3	21/01	15	21/05	27	21/09
4	01/02	16	01/06	28	01/10
5	11/02	17	11/06	29	11/10
6	21/02	18	21/06	30	21/10
7	01/03	19	01/07	31	01/11
8	11/03	20	11/07	32	11/11
9	21/03	21	21/07	33	21/11
10	01/04	22	01/08	34	01/12
11	11/04	23	11/08	35	11/12
12	21/04	24	21/08	36	21/12

Tableau 7 – Correspondance entre le numéro de décade

et la date de début de décade

• Les paramètres de seuillage de la production permettent de masquer les zones de faible production et les zones où la saison de croissance n'est pas encore suffisamment commencée à la date de la dernière décade disponible.

Production_Min (Valeur réelle, en kg/ha, positive ou nulle)

Ce paramètre indique la valeur minimale de production moyenne annuelle, exprimée en kg/ha, en-deçà de laquelle sera appliqué le masque. Afin d'exclure les zones désertiques de l'analyse, le paramètre peut être fixé, par exemple, à 50 kg/ha.

Production Seuil (Valeur réelle entre 0 et 100)

Ce paramètre influence uniquement le calcul de l'anomalie de l'année en cour. Il définit un masque pour les zones où la saison de croissance n'est pas encore suffisamment avancée pour un calcul fiable de l'anomalie. Ce paramètre, exprimé en %, indique le seuil de production qui doit être normalement atteint par rapport à la production totale moyenne à la date de la dernière décade disponible. Une explication plus détaillée de ce paramètre est donnée en section 4.3.2.

• Les paramètres de filtrage des données DMP intrant

NDVI_Seuil (Valeur réelle entre -1 et 1)

Ce paramètre indique la valeur de NDVI seuillage du DMP (voir section 4.1.4). Une valeur de -1 désactive le filtre.

FAPAR_Seuil_Bas (Valeur réelle entre 0 et 1, -1 désactive)

Ce paramètre indique la valeur basse du ré-étalement du DMP suivant les valeurs de FAPAR (voir section 4.1.4). -1 désactive le filtre. L'activation de ce filtre nécessite le téléchargement du champs FAPAR (voir section 3.2.3).

FAPAR_Seuil_Haut (Valeur réelle entre 0 et 1)

Ce paramètre indique la valeur basse du ré-étalement du DMP suivant les valeurs de FAPAR (voir section 4.1.4).

• Le facteur d'utilisabilité de la biomasse est paramétrable.

Utilisable_Flag (0 : Désactivé, 1 : Activé)

Ce paramètre active ou désactive le calcul de l'utilisabilité. L'utilisabilité de la biomasse est décrite en section 4.1.2.

<u>Conversion_Facteur_F0</u> (Valeur réelle, en %, entre 0 et 100) Ce paramètre, exprimé en %, est le facteur de conversion en climat soudanien (Sud de l'isohyète 600 mm). La valeur par défaut est 30%.

<u>Conversion_Facteur_F1</u> (Valeur réelle, en %, entre 0 et 100) Ce paramètre, exprimé en %, est le facteur de conversion en climat Sahélien (Nord de l'isohyète 400 mm). La valeur par défaut est 50%.

• Le paramétrage du calcul de l'indice de vulnérabilité VI est accessible. Une description plus détaillée de l'indicateur de vulnérabilité est consultable dans le chapitre décrivant les sorties du BioGenerator (section 4.3.3).

<u>Alpha_VI</u> (Valeur réelle, en %, entre 0 et 100) Ce paramètre donne la proportion en % de l'année en cours dans le calcul de l'indice de vulnérabilité. La valeur par défaut est 50%.

• Le facteur d'accessibilité à l'eau de la biomasse est paramétrable. Le calcul de l'accessibilité de la biomasse est décrit en sections 4.1.3 et 5.1.2.

<u>Access_Flag</u> (0 : Désactivé, 1 : Activé) Ce paramètre active ou désactive le calcul de l'accessibilité.

<u>Dist_Max</u> (Valeur réelle, en km, supérieure à 0) Ce paramètre, exprimé en km, donne la distance maximale d'accessibilité à un point d'eau.

<u>Conversion_Facteur_P0</u> (Valeur réelle, en %, entre 0 et 100) Ce paramètre, exprimé en %, est le facteur d'accessibilité de fond pour les zones d'index d'aridité de AI-5 à AI-7.

Conversion_Facteur_P1 (Valeur réelle, en %, entre 0 et 100)

Ce paramètre, exprimé en %, est le facteur d'accessibilité de fond pour les zones d'index d'aridité de AI-1 à AI-2.

<u>Forages_Flag</u> (0 : Désactivé, 1 : Activé) Ce paramètre active la prise en compte des forages artificiels dans le calcul de l'accessibilité (voir section 2.4).

 Le paramétrage de masque active le découpage des fichiers rasters *Geotiff* de sortie suivant le shapefile MASK qui définit la zone d'intérêt (voir section 3.3). Le paramétrage de profils active la sauvegarde des valeurs décadaires de DMP dans les tables attributaires des fichiers vectoriels *Shapefile* de sortie (voir section 4.3.6).

<u>Masque</u> (0 : Désactivé, 1 : Activé) Activation ou désactivation du masque de la zone d'intérêt

<u>Profils</u> (0 : Désactivé, 1 : Activé) Activation des profils DMP

 Le paramétrage d'optimisation permet d'accélérer le temps de calcul lors d'exécutions du BioGenerator successives, les étapes intermédiaires étant sauvegardées. En contrepartie, le volume de fichier stocké sur le disque est plus important. Le paramètre de compression permet de réduire la taille de ficher raster *Geotiff*.

<u>Optimisation</u> (0 : Désactivé, 1 : Activé) Ce paramètre active ou désactive la fonction d'optimisation.

<u>Compression</u> (0 : Désactivé, 1 : Activé) Ce paramètre active ou désactive la fonction de compression des fichiers *Geotiff* de sortie Le paramétrage des sorties brutes est accessible. Ces fichiers sont stockés dans le répertoire Output/Raw/Biomass/ au format raw (.img) avec fichier header (.hdr). Une explication plus détaillée de ces sorties est accessible en section 4.3.7.

Sorties_Raw (0 : Désactivé, 1 : Activé)

Ce paramètre active ou désactive les sorties brutes de l'ensemble des champs. L'activation de ce paramètre désactive le paramètre Optimisation.

Garde_Ancien (0 : Désactivé, 1 : Activé)

Ce paramètre active ou désactive la conservation des fichiers issus d'une session précédente. Dans le cas de la conservation, les nouveaux fichiers crées écrasent les anciens.

4.2.3 Exécution du programme

L'installation de MATLAB Compiler Runtime R2016a est nécessaire avant l'exécution du programme. Si nécessaire, il convient d'exécuter le programme d'installation : Libs/Utils/MCR_R2016a_win64_installer.exe

L'exécution du programme se fait simplement en double-cliquant sur le fichier exécutable BioGenerator.exe. Une fenêtre d'exécution s'ouvre récapitulant les paramètres utilisés, l'ensemble des décades repérées servant au calcul et le nombre d'années calculables à partir de cette série. Un compteur indique la progression du calcul en pourcentage des phases successives.

Le fichier Output/Biomass/Report/BioGenerator_Report.txt enregistre sous un format texte les informations de la dernière exécution, y compris l'heure et la date du début de calcul.

Dépendamment du nombre de décade, de la vitesse du processeur et celle du disque dur et des options activées, le temps de calcul peut varier de 2 à 10 heures. La configuration minimale requise concerne essentiellement la mémoire vive disponible avec un minimum de 2 Go disponibles.

Command Prompt - BioGenerator.exe	-	×
<pre>* BioGenerator (v5.3) * * Action Contre la Falm (ACF-E) * * Erwann Fillol (2020) * * erwann.fillol@gmail.com *</pre>		^
Initialisation : OK		
Filtre spatial : Nul Integration : 0401 > 0321 Seuil Production : Min = 0 kg/ha ; Seuil = 10 % Seuil NOVI : 0.152 Seuil FAPAR : 0.000 - 0.052 Utilisabilite : Nul Accessibilite : Nul VI Vulnerabilite : 50 % Decades : 19990101 > 20200501 Nombre de decades : 769 Annees : 1999 > 2020		
Calcul principal : 100 % Ecriture : 100 % (3/3) Temps execution : 3 h 6 min		
Operations terminees		
		\sim

Figure 10 – Fenêtre d'exécution du module BioGenerator

4.3 Fichiers de sortie

BioGenerator produit des fichiers de sorties sous trois formats différents : le format image, le format tableur et le format vectoriel.

• Fichiers au format image

Les fichiers au format image ou raster sont au format *geotiff* (.tif), suivant une projection géographique Lat/Lon utilisant le datum WGS-84. La résolution est de 30" d'arc, soit environ 1×1 km. Les coordonnées limites de la fenêtre sont données dans le Tableau 1. Le codage des données est au format réel 32 bits poids faible en tête (*32 bits little endian floating point*). Si l'option est activée, les fichiers sont compressés (compression sans perte LZW).

• Fichiers au format tableur

Les fichiers au format tableur (.csv) sont visualisables avec un éditeur de texte ou bien avec logiciel tableur comme Excel. Les fichiers au format tableur correspondent aux découpages définis dans les *shapefiles* ADM_n et GEO_n et indiquent la production totale de biomasse ainsi que l'indicateur de vulnérabilité pour chaque polygone de ces fichiers vectoriels. Le séparateur de colonne est le point-virgule.

• Fichiers au format vectoriel

Les fichiers au format vectoriel sont des *shapefile* (.shp) contenant des polygones avec une table attributaire. La projection est géographique Lat/Lon utilisant le datum WGS-84. Les données produites au format vectoriel *shapefiles* reprennent chacun des fichiers ADM_n et GEO_n en y ajoutant une table attributaire contenant, pour chaque polygone, la production totale de biomasse, l'indicateur de la vulnérabilité, ainsi que le la valeur décadaire moyenne de DMP si l'option « profils » est activée.

4.3.1 Cartes de quantité de biomasse

Le champ de sortie de la quantité de biomasse produite, équivalent à un rendement et exprimée en kg de matière sèche par hectare (kgMS.ha⁻¹), est donné pour chacune des années de la série et pour la moyenne de ces années.

La quantité de biomasse produite annuelle est calculée comme le cumul sur la saison de croissance de la productivité quotidienne (kg.ha⁻¹.jour⁻¹) donnés par les décades DMP. La saison de croissance d'une année est définie par l'utilisateur. Les paramètres par défaut définissent la saison de croissance s'étendant de la première décade d'avril à la dernière décade de mars de l'année suivante, ce qui correspond à la saison des pluies de l'Afrique de l'Ouest ou mousson ouest africaine.

La quantité de biomasse produite calculée pour l'année en cours, et dont les décades DMP ne seraient pas encore disponibles sur toute la saison de croissance, est complétée, sur la période manquante, par la moyenne de la productivité mesurée sur les années antérieures. En conséquence, la carte de quantité de biomasse pour l'année en cours, dépendamment du nombre de décade disponibles pour cette année, est une estimation de la production totale réelle.

Les fichiers de sortie de quantité de biomasse sont au format *geotiff* (.tif), possiblement compressés, en projection géographique plate carrée Lat/Lon WGS-84 et avec une résolution spatiale de 1×1 km. La position de fichier est donnée par le Tableau 8, les valeurs possibles sont données par le Tableau 9.

Fichiers	Répertoire	Nomenclature
Biomasse année aaaa	Output/Diamaga/Diamaga/	Biomass_aaaa.tif
Biomasse moyenne	Output/Biomass/Biomass/	Biomass_Mean.tif

Tableau 8 – I	Nomenclature	des fichiers	de quantité	de biomasse
---------------	--------------	--------------	-------------	-------------

Valeur	Signification	Unité
[0 , +∞[Quantité de Biomasse	(kg.ha⁻¹)
-9999	Océan, eau ouverte	-
-9995	Valeur de masquage hors de la zone d'intérêt	-

Tableau 9 – Tableau de valeurs possibles dans les fichiers de quantité de biomasse

Figure 11 – Carte de biomasse moyenne 1998-2017

4.3.2 Cartes d'anomalie de biomasse

Le BioGenerator donne l'anomalie de production de biomasse pour chacune des années. L'anomalie est une comparaison de la production de biomasse de l'année considérée à la moyenne calculée sur l'ensemble des années disponibles. Deux représentations de l'anomalie sont produites :

- L'anomalie (%) exprime en pourcentage le rapport de production pour l'année considérée par rapport à la moyenne et avec un seuillage maximal à 200%.
- L'anomalie sigma (σ) exprime la différence de l'année considérée à la moyenne en nombre d'écart type calculé sur la période. Un seuillage est effectué entre -10 et +10.

Sur les zones où la production est toujours nulle (zones désertiques), la valeur de sortie du fichier d'anomalie est fixée à -9998.

L'année en cours est, intrinsèquement, non terminée, c'est-à-dire, que l'on ne dispose pas nécessairement encore de l'ensemble des décades jusqu'à la fin de la période d'intégration (Decade_Fin_Integration). Pour l'année en cours, et seulement pour celle-ci, l'anomalie se calcule à partir des décades disponibles depuis le début de la saison de croissance (Decade_Debut_Integration) jusqu'à la dernière décade présente dans la base de données. Pour que la valeur de l'anomalie ainsi calculée reste significative, son calcul ne débute qu'à partir du moment où un seuil de la production annuelle moyenne, calculée sur la période d'intégration, a déjà été atteint. Ce seuil est donné par Production_Seuil (%). Dans le cas contraire, si le seuil n'est pas atteint, la valeur -9997 est affectée au pixel. En d'autres termes, ce seuil correspond au fait qu'à la date de la dernière décade disponible, la saison de croissance n'est encore suffisamment commencée à cet endroit pour établir un calcul d'anomalie significatif.

Un second masque peut-être appliqué : L'anomalie est calculée uniquement sur les zone dépassant une production moyenne minimale donnée par le paramètre Production_Min (kg.ha⁻¹). Les zones de production inférieure sont masquées avec la valeur -9996. Le Tableau 10 donne la position des fichiers d'anomalies de biomasse, tandis que le Tableau 11 donne les valeurs possibles dans ces fichiers.

Fichiers	Répertoire	Nomenclature
Anomalie [%] année <i>aaaa</i>		Anomaly_aaaa.tif
Anomalie [σ] année <i>aaaa</i>	Output/Biomass/Anomaly	AnomalySigma_aaaa.tif

Valeur	Signification	Unité
[0 , 200]	Anomalie (%)	(%)
[-10 , +10]	Anomalie (σ)	(σ)
-9999	Océan, eau ouverte	-
-9998	Biomasse toujours nulle	-
-9997	Saison de croissance non suffisamment commencée	-
-9996	Production moyenne totale trop faible	-
-9995	Valeur de masquage hors de la zone d'intérêt	-

Tableau 10 – Nomenclature des fichiers d'anomalies de biomasse

Tableau 11 – Tableau des valeurs possibles

dans les fichiers d'anomalies de biomasse (%) et (σ)

Figure 12 – Carte d'anomalie de production de biomasse pour l'année 2017

La Figure 12 montre la carte d'anomalie de production de biomasse pour l'année 2017 calculée avec une base de données allant d'avril 1998 jusqu'à novembre 2017. La période d'intégration choisie est de début avril à fin mars. La production moyenne est calculée sur la période couverte par la base de données. Les zones apparaissant en vert montrent une production excédentaire de biomasse, jusqu'à 200% de la production moyenne, tandis que les zones apparaissant en rouge montrent une production inférieure à la moyenne, jusqu'à 0% de la production moyenne. Les zones marquées *No Biomass* présentent une production toujours nulle sur la période.

4.3.3 Cartes d'indice de vulnérabilité VI

L'indice de vulnérabilité est créé pour pallier à une analyse simple par anomalie qui compare l'année en cours avec l'ensemble des années antérieures, sans considérer les enchainements d'anomalies. Effectivement, les éleveurs sont plus sensibles à une succession de sécheresses qu'à un seul évènement isolé.

Le principe de l'indicateur VI est basé sur un calcul récursif décrit par l'équation (6). Pour chaque année, la contribution au calcul de l'indicateur VI_{Année} est la somme d'une pondération entre l'anomalie de l'année considérée AN_{Année} et l'indicateur de vulnérabilité calculé pour l'année antérieur (VI_{Année-1}). La contribution relative de ces deux termes est donnée par le paramètre unique α_{VI} .

L'anomalie AN_{Année} est calculée comme le rapport de la production de l'année considérée par rapport à la moyenne pondérée et normalisée des années antérieures comme décrit par l'équation (7). AN_{Année} peut prendre une valeur comprise entre -1 pour une année très déficitaire et +1 pour une année très excédentaire.

La condition à la limite de la récursivité est donnée une valeur de vulnérabilité nulle pour l'année de départ de la série (équation (8)).

Ainsi construit, l'indice VI est sensible à une succession d'anomalies négatives ou positives et est capable d'identifier les zones de forte vulnérabilité aux anomalies négatives consécutives. Egalement, puisque l'indicateur VI est calculé à partir des années précédentes suivant une pondération dégressive, il est très peu sensible une tendance globale.

$$VI_{Année} = \alpha_{VI} \times AN_{Année} + (1 - \alpha_{VI}) \times VI_{Année-1}$$
(6)

Avec

$$AN_{Ann\acute{e}e} = \frac{Biomasse_{Ann\acute{e}e}}{\sum_{A=Ann\acute{e}e}^{1998} (1-\alpha_{VI})^{(Ann\acute{e}-A)} \times Biomasse_{A}} -1$$
(7)
$$\sum_{A=Ann\acute{e}e}^{1998} (1-\alpha_{VI})^{(Ann\acute{e}-A)}$$

Et comme condition limite

Le Tableau 12 donne l'évolution en fonction du coefficient α_{VI} du nombre d'années, y compris l'année en cours, dont la contribution est supérieure à 1% dans le calcul de l'indicateur de vulnérabilité VI.

α _{vi}	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Nombre d'années	23	14	10	8	6	5	4	3	2

Tableau 12 – Nombre d'années antérieures de contribution supérieure à 1% en fonction du coefficient α_{VI}

La Figure 13 montre l'évolution de la contribution de chacune des années antérieures et de l'année en cours (année 0) dans le calcul du VI pour trois valeurs différentes du paramètre α_{VI} : 25%, 50% et 75%.

De par sa construction basée sur une sensibilité aux enchaînements des évènements antérieurs de l'année considérée, les avantages de l'indicateur de vulnérabilité par rapport à un calcul simple de l'anomalie de biomasse sont :

- La prise en compte d'événements de sécheresse consécutifs
- L'insensibilité à la tendance sur le long terme
- La faible sensibilité à un événement sec ou humide éloigné temporellement
- Invariabilité de l'indice de vulnérabilité des années antérieures lors de l'ajout de nouvelles décades

Fichiers	Répertoire	Nomenclature
VI année <i>aaaa</i>	Output/Biomass/VI/	VI_aaaa.tif

Tableau 13 – Nomenclature des fichiers de VI

Valeur	Signification	Unité
[-1 , 1]	VI	[Unité]
-9999	Océan, eau ouverte	-
-9998	Biomasse toujours nulle	-
-9997	Saison de croissance non suffisamment commencée	-
-9996	Production moyenne totale trop faible	-
-9995	Valeur de masquage hors de la zone d'intérêt	-

Tableau 14 – Tableau de valeurs possibles dans les fichiers de VI

ACTION CONTRE LA FAIM | ACTION AGAINST HUNGER | Bureau Régional pour l'Afrique de l'Ouest www.actionagainsthunger.org | www.actioncontrelafaim.org | www.accioncontraelhambre.org www.sigsahel.info

Figure 14 – Carte de l'indicateur de vulnérabilité VI pour l'année 2017 La

Figure 14 montre une carte de l'indicateur de vulnérabilité VI pour l'année 2017 basée sur la saison de croissance calée sur le Sahel (début avril à fin mars) et avec un coefficient $\alpha_{VI} = 50$ %. Sur cette carte, les zones apparaissant un marron présentent un VI inférieur à 0 synonyme d'une vulnérabilité plus forte. Sur ces zones, la production de biomasse a certainement été faible pendant plusieurs consécutives et proches de l'année 2017. A contrario, les zones apparaissant en vert présentent un coefficient VI positif synonyme d'une situation favorable et depuis plusieurs années.

4.3.4 Cartes de paramètres d'analyse statistique

Le BioGenerator 2 calcule les champs de sortie d'écart type interannuel de production de biomasse, de tendance interannuelle et de corrélation temporelle interannuelle. La tendance interannuelle est donnée sous deux expressions d'unités différentes :

- Tendance absolue exprimée en kg.ha⁻¹.année⁻¹
- Tendance relative à la moyenne exprimée en %.année⁻¹

La corrélation temporelle est le coefficient de corrélation R² entre la production de biomasse et l'année. Ce coefficient de corrélation quantifie la stabilité de la tendance temporelle.

Fichiers	Répertoire	Nomenclature
Ecart type (σ)		Sigma.tif
Tendance	Output/Diamaga/Ctat/	Trend.tif
Tendance (%)	Output/Biomass/Stat/	TrendPercent.tif
Corrélation temporelle (R ²)		TrendR2.tif
Valeur	Signification	Unité
---------------	---	---
]-inf , +inf[Ecart type	(kg.ha ⁻¹)
]-inf , +inf[Tendance temporelle	(kg.ha ⁻¹ .année ⁻¹)
]-inf , +inf[Tendance temporelle (%)	(%.année ⁻¹)
[0 , 1]	Corrélation temporelle R ²	Sans unité
-9999	Océan, eau ouverte	-
-9998	Biomasse toujours nulle	-
-9995	Valeur de masquage hors de la zone d'intérêt	-

Tableau 15 – Nomenclature	e des fichiers	d'analyse statistique
---------------------------	----------------	-----------------------

Tableau 16 – Tableau de valeurs possibles dans les fichiers d'analyse statistique

Figure 15 – Carte de tendance de production de biomasse calculée entre 1998 et 2017

La Figure 15 montre la tendance relative calculée entre 1998 et 2017. Sur cette carte, les zones en vert affichent une progression de la production annuelle de biomasse pouvant être supérieure à +8 %/année. Sur les zones en rouge on calcule une diminution de la production de biomasse atteignant -8 %/année. Entre 1998 et 2017 on observe une augmentation notable de la production de biomasse en particulier sur la zone Sahélienne de l'Afrique de l'Ouest.

4.3.5 Profils de production de biomasse et de l'indicateur de vulnérabilité

Le BioGenerator 2 produit des fichiers de sortie de production totale de biomasse et de l'indice de vulnérabilité VI moyen suivant les découpages administratifs niveaux 0, 1 et 2, et suivant des découpages définis par l'utilisateur. Les fichiers de sortie, présentés dans le Tableau 17, sont au format .csv et le pointvirgule est utilisé comme séparateur de colonnes. Ces fichiers peuvent être directement ouverts par un logiciel tableur tel Excel.

La Figure 16 et la Figure 17 montrent des extraits de ces fichiers de sorties respectivement pour la biomasse totale et pour l'indicateur de vulnérabilité moyen suivant le découpage administratif de niveau 0 (Pays).

La quantité de biomasse est la quantité totale produite sur le découpage vectoriel et exprimé en tonne et en considérant la superficie totale.

L'indice de vulnérabilité est la moyenne de l'indice de vulnérabilité calculé sur l'ensemble du découpage vectoriel. Pour une zone toujours désertique, de production nulle, la valeur flag -9999 est inscrite.

Champs	Découpage	Répertoire	Fichier		
	ADM_0		Biomass_ADM_0.csv		
	ADM_1		Biomass_ADM_1.csv		
Diamagaa	ADM_2		Biomass_ADM_2.csv		
Biomasse	GEO_3		Biomass_GEO_3.csv		
	GEO_4		Biomass_GEO_4.csv		
	GEO_5	Qutnut/Diamaga/Danart/	Biomass_GEO_5.csv		
	ADM_0	Output/biomass/Report/	VI_ADM_0.csv		
	ADM_1		VI_ADM_1.csv		
Indicateur de	ADM_2		VI_ADM_2.csv		
vulnérabilité VI	GEO_3		VI_GEO_3.csv		
	GEO_4		VI_GEO_4.csv		
	GEO_5		VI_GEO_5.csv		

Tableau 17 – Fichiers de sorties de production de biomasse totale et d'indicateur de vulnérabilité moyen

A (b.	B	C	D	E	F.	G	н	1	1	K	L	M	N	0	P	Q	R	S	T	U	V	W	х	Y.
1	Source:	Lib\Ancillar	V/Img\ADM_	0.img																				
2	Nb_entities:																							
3	Biomass_Pro	[tons]																						
4																								
5	NAME	IDBIOHYDR	AREA[sqkm	MEAN	BIO_1998	810_1999	BIO_2000	BIO_2001	BIO_2002	BIO_2003	BIO_2004	810_2005	BIO_2006	BIO_2007	810_2008	BIO_2009	BIO_2010	810_2011	810_2012	BIO_2013	BIO_2014	BIO_2015	BIO_2016	BIO_2017
6	Chad		126819	605576408	546979884	685509341	582048458	537307437	509831503	587612578	539025196	564575186	561776276	554149535	666993636	595779378	699358424	614522654	716215710	656705710	654206505	622745705	617572928	598912119
7	Senegal		19555	5 182710964	139054683	176544209	179385494	151671243	122753930	167185360	173728450	184987083	165218239	166414435	226961857	211658874	234841324	195196352	224433333	214676246	173159933	185214279	184544198	175751146
8	Niger		118216	5 70249755	61232317	87649654	49210976	52485110	51378090	71590275	47847745	68293307	62052462	66336477	75834216	56434838	93824626	64250515	94393865	83038478	79737581	81236151	78204371	81246706
9	Nigeria		90891	9 1.379E+09	1.216E+09	1.316E+09	1.276E+09	1.25E+09	1.338+09	1.381E+09	1.332E+09	1.287E+09	1.312E+09	1.305E+09	1.528E+09	1.542E+09	1.5088+09	1.419E+09	1.468E+09	1.457E+09	1.478E+09	1.357E+09	1.407E+09	1.4258+09
10	Cameroon		46818	5 1.378E+09	1.114E+09	1.24E+09	1.196E+09	1.247E+09	1.3038+09	1.292E+09	1.335E+09	1.26E+09	1.369E+09	1.34E+09	1.471E+09	1.519E+09	1.471E+09	1.422E+09	1.486E+09	1.486E+09	1.521E+09	1.484E+09	1.467E+09	1.571E+09
11	Mali		124811	443772567	373627622	466965312	408695885	359374903	316433558	433190335	370630779	393147972	403505809	417156187	533689184	507281141	538848476	432724346	550250745	491880211	465909520	504212779	470367342	437189120
12	Burkina_Fas	1 S	27463	2 269632324	252362183	269732264	254987309	226291291	214156277	268678413	250654035	241737410	252887764	248118437	307717251	302742834	320765766	263909100	306739958	293773933	280940866	278786867	278229478	280949906
13	Mauritania	1	104203	5 31772381	17433850	34874017	24779143	18876524	8407470.4	34491841	23268978	25232978	27125846	35012761	40409700	44779189	54302201	21408257	51577082	40711022	27475949	42127044	40189103	21906240
14	Gambia		1129	7 14549808	12006116	14392969	14589722	13134009	11512446	13803562	14236158	14249635	13832106	13574038	17195532	15778404	16721580	14922294	16563529	16272014	14246876	15025278	14810195	14060582

Figure 16 – Extrait du fichier de sortie de biomasse totale Output/Biomass/Report/Biomass_ADM_0.csv

4											~				0		0			-				N/
10	~	0		U	c	. r	0	п		,	ĸ	L.	IVI	IN	0		ų	n	9		0	v	vv	^
1		Source:	Lib\Ancillary	\Img\ADM_0.i	img																			
2		Nb_entities:	9	•																				
3		Vulnerability	[No Unit]																					
4																								
5		NAME	IDBIOHYDR	CAREA[sqkm]	VI_1998	VI_1999	VI_2000	VI_2001	VI_2002	VI_2003	VI_2004	VI_2005	VI_2006	VI_2007	VI_2008	VI_2009	VI_2010	VI_2011	VI_2012	VI_2013	VI_2014	VI_2015	VI_2016	VI_2017
6		Chad	1	1268197	(0.088	-0.124	-0.133	-0.182	-0.112	-0.15	-0.051	-0.115	-0.009	-0.037	-0.107	0.047	-0.078	0.033	-0.019	-0.026	-0.076	-0.088	-0.125
7		Senegal	2	195555	(0.043	0.046	-0.018	-0.125	-0.005	0.02	0.063	0.008	-0.004	0.07	0.062	0.082	-0.003	0.02	-0.001	-0.095	-0.064	-0.033	-0.052
8		Niger	3	1182165	(0.111	-0.197	-0.209	-0.295	-0.133	-0.242	-0.129	-0.151	0.018	-0.045	-0.205	0.031	-0.133	0.018	-0.028	-0.065	-0.052	-0.1	-0.08
9		Nigeria	4	908919	(0.018	0.001	-0.011	0	0.022	0.002	-0.002	-0.005	-0.01	0.036	0.032	0.028	-0.003	0.006	-0.001	-0.002	-0.023	-0.01	-0.006
10		Cameroon	5	468186	(0.023	0.008	0.013	0.018	0.015	0.016	-0.001	0.012	0.007	0.03	0.034	0.02	0.001	0.009	0.004	0.008	0	-0.004	0.01
11		Mali	(1248110	(0.129	-0.083	-0.144	-0.241	-0.088	-0.116	-0.096	-0.056	0.006	-0.018	-0.061	0.058	-0.073	-0.02	-0.055	-0.11	-0.006	-0.064	-0.099
12		Burkina_Fasc	7	274632	(0.018	-0.025	-0.052	-0.084	0.018	-0.01	-0.003	-0.001	0.011	0.061	0.041	0.054	-0.022	0.016	0.008	-0.02	-0.016	-0.017	-0.016
13		Mauritania	8	1042035	(0.149	-0.053	-0.186	-0.413	0.056	-0.182	-0.155	-0.096	0.022	-0.054	0.021	0.163	-0.21	-0.037	-0.047	-0.251	-0.098	-0.129	-0.291

Figure 17 – Extrait du fichier de sortie de biomasse totale Output/Biomass/Report/VI_ADM_0.csv

Dans chacun des fichiers, un entête rappelle le fichier *shapefile* source, le nombre d'entités repérées et l'unité des valeurs de sortie. Pour la production de biomasse totale, l'unité est la tonne de matière sèche.

A partir de ces fichiers de sortie, il est possible de tracer l'évolution temporelle de la biomasse totale et de l'indicateur de vulnérabilité moyen sur différents niveaux administratifs (ADM_n) et sur les découpes utilisateur (GEO_n). La Figure 18 est un exemple de profils mesurés sur le Mali entre 1998 et 2017.

Figure 18 – Profils temporels de la production de biomasse totale et de l'indice de vulnérabilité moyen sur le Mali

4.3.6 Sorties au format vectoriel

BioGenerator produit des sorties vectorielles des valeurs de production de biomasse et d'indice de vulnérabilité. Les découpages vectoriels utilisés sont ADM_0, ADM_1, ADM_2 ainsi que GEO_3, GEO_4 et GEO_5 tels que décris dans le paragraphe 3.3. Les sorties au format vectoriel *shapefile* (.shp) se trouvent dans le répertoire Output/Biomass/Shape/. Dans la table attributaire sont contenus les informations déjà décrites dans la section 4.3.5 concernant les sorties .csv.

Dans le cas où l'option « Profils » est activée (voir section 4.2.2), la table attributaire est complétée par les valeurs de production décadaires de biomasse en moyenne sur chaque polygone. Ces valeurs de production sont pondérées par les facteurs d'accessibilité et d'utilisabilité si les fonctionnalités sont activées (voir section 4.2.2). En plus de ces valeurs décadaires, sont inscrits dans la table attributaire, pour chacune des 36 décades de l'année, les valeurs statistiques interannuelles de production maximale, minimale et moyenne, ainsi que l'écart type. Le Tableau 18 répertorie l'ensemble des variables inscrites dans la table attributaire des fichiers vecteurs en sortie du BioGenerator.

Nom	Description	Fréquence	Unité		
Area	Superficie du polygone		Km ²		
YEAR_FIRST	Première année de la série	Lloigue	Δορόο		
YEAR_LAST	Dernière année de la série	Unique	Annee		
BIO_MEAN	Production annuelle de biomasse moyenne		Tonnes		
BIO_aaaa	Production annuelle de biomasse de l'année aaaa	Appuello	sèche		
VI_aaaa	Indice de vulnérabilité annuelle de l'année aaaa	Annuelle	Unitaire		
DMP_MEA_dd	Production décadaire interannuelle moyenne pour la décade dd (*)				
DMP_MIN_dd	Production décadaire interannuelle minimale pour la décade dd (*)	Décadaire	ka boʻl jour-1		
DMP_MAX_dd	Production décadaire interannuelle maximale pour la décade dd (*)	36 valeurs	kg.na .jour		
DMP_STD_dd	Ecart type interannuel de la production décadaire pour la décade dd (*)				
DMP_FIRST	Première décade de la série temporelle (*)	Lipiquo	aaaadd		
DMP_LAST	Dernière décade de la série temporelle (*)	Unique	aaaduu		
DMP_aaaadd	Production décadaire pour la décade dd de l'année aaaa (*)	Décadaire	kg.ha ⁻¹ .jour ⁻¹		

Tableau 18 – Composition de la table attributaire des fichiers vecteurs de sortie de BioGenerator (* uniquement si l'option « profils » est activée)

La Figure 19 montre un affichage de type vectoriel de l'indice de vulnérabilité VI pour 2017. Sur cette figure, concernant le delta intérieur du Niger, le découpage vectoriel de référence est au niveau administratif 2 (département).

Figure 19 – Indice de vulnérabilité VI pour 2017 en représentation vectorielle au niveau administratif 2 (département) sur la région du delta intérieur du Niger

4.3.7 Sorties brutes

En activant l'option dans le paramétrage, il est possible de conserver les fichiers bruts (raw) issus des calculs intermédiaires du BioGenerator 2.

Ces fichiers sont au format raw et se présentent sous la forme d'un fichier image (.img) et d'un fichier header (.hdr). La dimension des fichiers est la même que celle des fichiers d'entrés (Tableau 1). Le codage des données est au format réel 32 bits poids faible en tête (*32 bits little endian floating point*). La valeur flag -9999.0 signifie l'absence de donnée.

Ces fichiers de sorties bruts peuvent servir aux utilisateurs avancés à des fins d'études plus poussées, en particuliers sur les profils temporels au pas de temps décadaire, pour le développement, la vérification et le débogage.

Il est important de noter que l'activation de cette option, en plus d'un temps de calcul augmenté, engendre une taille de fichier de sortie beaucoup plus importante : env. 15 Go supplémentaires par année de données.

La description de l'ensemble de ces fichiers, ainsi que leur position, sont données dan	S
le Tableau 19.	

Nom	Description	Répertoire	Nomenclature		
Biomasse Annuelle	Biomasse Annuelle	Data/Raw/Biomass/Biomass/	Biomass_aaaa		
Biomasse Moyenne	Moyenne calculée sur le nombre d'année dispo	Data/Raw/Biomass/Biomass/	Biomass_Mean		
Anomalie Annuelle	Rapport Biomasse Annuelle sur Biomasse Moyenne	Data/Raw/Biomass/Anomaly/	Anomaly_aaaa		
Anomalie Annuelle [σ]	Ecart de Biomasse à la moyenne en écart type	Data/Raw/Biomass/Anomaly/	AnomalySigma_aaaa		
Indicateur Vulnérabilité	Indicateur Vulnérabilité	Data/Raw/Biomass/VI/	VI_aaaa		
Ecart type	Ecart type interannuel	Data/Raw/Biomass/Stat/	Sigma		
Tendance	Tendance annuel calculée sur la période	Data/Raw/Biomass/Stat/	Trend		
Tendance %	Tendance annuel calculée sur la période et exprimée en %	Data/Raw/Biomass/Stat/	TrendPercent		
Corrélation temporelle	Coefficient de corrélation biomasse annuelle	Data/Raw/Biomass/Stat/	TrendR2		
Filtre DMP	Valeurs de DMP filtrées	Data/Raw/Biomass/Filter/DMP/	DMP_aaaammjj		
Filtre NDVI	Valeurs de NDVI filtrées	Data/Raw/Biomass/Filter/NDVI/	NDVI_aaaammjj		
Cumul DMP	Valeurs de DMP cumulées sur la saison de croissance	Data/Raw/Biomass/Cumul/	Cumul_aaaammjj		
Type DMP	Valeurs de DMP sur l'année moyenne (année type)	Data/Raw/Biomass/Type/DMP/	DMP_ <i>mmjj</i>		
Type NDVI	Valeurs de NDVI sur l'année moyenne (année type)	Data/Raw/Biomass/Type/NDVI/	NDVI_ <i>mmjj</i>		
DMP Pondéré	Valeur de DMP filtré et pondéré par l'accessibilité à l'eau	Data/Raw/Biomass/Ponderate/	DMP_aaaammjj		
Accessibilité	Valeurs de pondération par l'accessibilité à l'eau	Data/Raw/Water/WaterAccess /	WaterAccess_aaaammjj		
Accessibilité moyenne	Valeurs types de pondération par l'accessibilité à l'eau	Data/Raw/Water/WaterAccessType/	WaterAccessType_mmjj		

Tableau 19 – Ensemble des données brutes issues du BioGenerator et signification

4.4 Validation des valeurs de biomasse

La comparaison des cartes de biomasse avec des mesures de quantité de biomasse *in situ* permet une validation des sorties du BioGenerator.

Une succession de campagnes de mesures de biomasse *in situ* a été faite par le CESBIO (Centre d'Etude Spatial de la BIOsphère) au Mali pour les années entre 1999 et 2002, par le DDP (Division Développement Pastoral) au Niger entre 1998 et 2015 et par le CSE (Centre de Suivi Ecologique) au Sénégal entre 2010 et 2015.

Toutes années et tous sites confondus, c'est un ensemble de 962 mesures ponctuelles sur une 60^{aine} de sites qui a été utilisé pour ce travail de validation. Les sites sont répartis en zone de steppe (*grassland*) à steppe éparse (*sparse grassland*) et zones d'agriculture (*croplands*) avec des valeurs de production (ou rendement à l'hectare) de biomasse comprises entre 0 et 7000 kg.ha⁻¹. La Figure 20 montre la localisation de ces sites de mesure.

Figure 20 – Localisation des sites de mesure de biomasse

ACTION CONTRE LA FAIM | ACTION AGAINST HUNGER | Bureau Régional pour l'Afrique de l'Ouest www.actionagainsthunger.org | www.actioncontrelafaim.org | www.accioncontraelhambre.org www.sigsahel.info La comparaison par régression linéaire montre un coefficient global de corrélation (R^2) de 0.86 et une erreur quadratique moyenne de RMSE = 393 kg.ha⁻¹ (Tableau 20).

	Année	Nombre de mesures	R ²	RMSE (kg.ha ⁻¹)
	1999	7	0.46	449
050010	2000	12	0.80	228
CESBIO	2001	10	0.98	263
IVIAII	2002	12	0.77	268
	Total	41	0.83	296
	1998	23	0.32	464
	1999	14	0.66	344
	2000	44	0.18	383
	2001	50	0.42	403
	2002	56	0.36	375
	2003	30	0.41	378
	2004	44	0.37	261
	2005	52	0.42	404
000	2006	50	0.74	280
DDP	2007	42	0.13	448
Niger	2008	48	0.48	415
	2009	61	0.17	396
	2010	48	0.69	412
	2011	57	0.29	390
	2012	49	0.56	453
	2013	53	0.49	466
	2014	49	0.64	417
	2015	54	0.61	412
	Total	824	0.53	399
	2010	12	0.95	455
	2011	20	0.98	338
COE	2012	12	0.95	444
COE	2013	18	0.97	368
Selleyal	2014	14	0.99	210
	2015	21	0.96	420
	Total	97	0.96	379
	Total SPOT-VGT	824	0,83	392
	Total PROBA-V	138	0.92	399
	Grand Total	962	0.86	393

Tableau 20 – Tableau récapitulatif de validation

L'erreur quadratique moyenne (*Root Mean Square Error*) est un indicateur statistique caractérisant la précision d'une estimation. Son calcul se fait suivant l'équation (9).

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (Biomasse_estimée_i - Biomasse_mesurée_i)^2}{n}}$$
(9)

Où n correspond au nombre de point de mesure de biomasse.

Sur cette gamme de valeurs de quantité de biomasse, la dispersion des valeurs ne montre pas de biais significatif. En ce sens, les valeurs de quantité de biomasse issues du BioGenerator 2 semblent réalistes.

Ce qui apparaît également lors de cette comparaison c'est qu'il n'y a pas de différence notable lors du passage du satellite SPOT-VEGETATION au satellite PROBA-V en 2014. Les valeurs de corrélation et d'erreur quadratique restant comparables.

4.5 Exemples d'utilisation

Ce paragraphe présente trois exemples d'utilisation du programme BioGenerator. Le premier exemple concerne la création d'une carte d'anomalie de production de biomasse pour l'année en cours (2017), suivi d'un second exemple pour la création d'un profil temporel de la production de biomasse sur le cercle (niveau administratif 2) de Gourma-Rharous, et enfin la création des cartes de la biomasse moyenne accessible et de la biomasse inaccessible sur le nord du Mali.

4.5.1 Création d'une carte d'anomalie de biomasse

Le premier exemple montre comment créer une carte de l'anomalie de production de biomasse pour l'année en cours (2017) sur le Nord-Mali et sans tenir compte des facteurs d'accessibilité et d'utilisabilité.

- <u>Téléchargement des nouvelles décades NDVI et DMP</u>: Les nouvelles décades disponibles doivent être téléchargées en suivant les instructions contenues dans le chapitre 3.
- 2. <u>Paramétrage du BioGenerator :</u> Les paramètres les plus importants sont ceux définissant la période d'intégration. Ils doivent encadrer la période de croissance de la végétation (saison des pluies). Sur le Mali, sous régime de la mousson ouest-africaine, on choisit respectivement les numéros de décades 10 et 9 pour Decade_Debut_Integration et Decade_Fin_Integration. Pour calculer la production de biomasse totale les options concernant l'utilisabilité et l'accessibilité doivent être désactivées : (0 pour Utilisable_Flag comme pour Access_Flag). La fonction de lissage spatiale est également désactivée pour garder la pleine résolution spatiale (0 pour Filtre_Flag).
- 3. Exécution du programme : En suivant les instructions de la section 4.2.3
- 4. <u>Utilisation d'un logiciel SIG pour la création de la carte</u>: L'utilisation d'un logiciel SIG tel QGIS permet d'afficher et de mettre en forme la carte. Un modèle de projet QGIS (incluant des styles) peut-être trouvé dans le répertoire GIS/QGIS Project/. Le fichier *geotiff* à récupérer est le fichier d'anomalie de production de biomasse exprimée en % pour l'année 2017 tel que décrit dans la section 4.3.2.

Figure 22 – Anomalie de production de biomasse sur le Nord-Mali pour l'année 2017 par rapport à la moyenne calculée entre 1998 et 2017

4.5.2 Création d'un profil temporel sur une entité administrative

Ce second exemple d'utilisation de BioGenerator vient à la suite du premier et vise à créer un profil temporel de production de biomasse sur une entité administrative de niveau 2 (département ou cercle). Ici le cercle d'intérêt est celui du Gourma-Rharous. Le profil de l'indice de vulnérabilité VI est également superposé au profil de production totale de biomasse

5. <u>Ouvrir les fichiers de sortie dans un tableur :</u> Les fichiers .csv concernent le niveau administratif 2 (ADM_2) pour la biomasse et le VI (section 4.3.5). Dans ces fichiers, directement accessibles sur un tableur comme Microsoft Excel, les lignes correspondant au cercle Gourma-Rharous donnent, pour le premier fichier, la production totale de biomasse pour chacune des années, et pour le second, l'indice de vulnérabilité VI.

Figure 23 – Profils temporels de la production totale de biomasse et de l'indice de vulnérabilité VI sur le cercle de Gourma-Rharous

4.5.3 Création des cartes de biomasse accessible et inaccessible

Ce dernier exemple fait suite aux deux premiers. Ici le but est de créer une carte de la biomasse accessible, c'est-à-dire pondérée par la distance aux points d'eau de surface et aux puits. Un second objectif est de créer une carte de la biomasse inaccessible, c'est-à-dire trop loin d'un point d'eau naturel ou artificiel. La biomasse inaccessible est définie comme la différence entre la biomasse totale est la biomasse accessible. Ces deux cartes concernent le Nord-Mali et la biomasse moyenne calculée sur l'ensemble de la période (1998-2017).

 Sauvegarde de la biomasse totale moyenne : Le fichier de biomasse moyenne totale, issu de la session BioGenerator précédente (section 4.5.1), doit être sauvegardé dans un répertoire temporaire. Ce fichier est le fichier « Biomasse Moyenne » tel que décrit dans la section 4.3.1. Nous appellerons ce fichier BiomasseTotale.

Figure 24 – Biomasse totale produite en moyenne entre 1998 et 2017 sur le Nord-Mali

- 7. <u>Paramétrage de BioGenerator :</u> Une seconde exécution du BioGenerator est nécessaire pour calculer la biomasse moyenne accessible. Pour cela le paramétrage implique d'activer la fonction d'accessibilité (1 pour Access_Flag) et utilisant les paramètres standards de distance et de pondération comme expliqué en sections 4.1.3 et 4.2.2. L'utilisation des points d'eau artificiels est également activée (1 pour Forages_Flag).
- 8. Exécution du programme : En suivant les instructions de la section 4.2.3
- <u>Calcul de la biomasse inaccessible :</u> Cette seconde exécution du BioGenerator produit la carte de la biomasse accessible moyenne (fichier « Biomasse Moyenne » tel que décrit dans la section 4.3.1). Nous appellerons ce fichier Biomasse_{Accessible}. L'utilisation d'une calculatrice « raster » de QGIS permet de calculer la biomasse inaccessible suivant l'équation (10).

$$Biomasse_{Inaccessible} = Biomasse_{Totale} - Biomasse_{Accessible}$$
 (10)

Figure 25 – Biomasse inaccessible en moyenne entre 1998 et 2017 sur le Nord-Mali

5 HydroGenerator

L'eau, avec le pâturage, est une ressource indispensable aux éleveurs et aux éleveurs nomades. Dans la zone sub-saharienne, les mares et les points d'eau de surface se remplissent de manière périodique durant la saison des pluies. Le taux et la durée de remplissage sont directement liés à la quantité et à la répartition des précipitations.

Le module HydroGenerator est un outil capable de générer des cartes annuelles d'indice décrivant l'accessibilité en eau de surface calculé à partir des données issues des acquisitions du capteur VEGETATION embarqué sur la série des satellites SPOT remplacé depuis 2014 par le satellite PROBA-V. L'accessibilité est un indice spatial sensible au temps de présence d'eau de surface et pondéré par la distance aux points d'eau. L'indice d'accessibilité à l'eau fait en même temps intervenir le temps de présence des points d'eau mais aussi leur répartition spatiale. Cet outil de suivi de l'accessibilité des eaux de surface en temps réel vient compléter la connaissance sur la quantité de pâturage accessible fourni par le module BioGenerator.

Dans sa version v3.0, HydroGenerator intègre les fonctionnalités jusqu'à lors dévouées au programme PondMonitor de suivi temps réel du taux de remplissage des mares et des points d'eau. PondMonitor n'existe donc plus et est complétement intégré à HydroGenerator.

L'extension spatiale de HydroGenerator concerne l'ensemble de l'Afrique Subsaharienne (Figure 1).

Ce chapitre explique la méthodologie utilisée, la mise en place et l'utilisation du module HydroGenerator, ainsi que les différentes fenêtres spatiales accessibles.

5.1 Principes de fonctionnement

La méthodologie est basée sur l'utilisation des produits SWB (*Small Water Bodies*) accessible sous forme de décade à 1×1 km de résolution et informant de manière booléenne de la présence d'eau de surface. Les puits et points d'eau artificiels dont la position est connue peuvent être inclus tel que décrit en section 2.4.

HydroGenerator est pourvu de deux fonctionnalités principales :

- Le calcul des superficies d'eau sur des découpages vectoriels polygonaux et le suivit au pas de temps décadaire
- La production de cartes annuelles du facteur d'accessibilité à l'eau

5.1.1 Calcul de la superficie d'eau

Le module HydroGenerator permet de suivre temporellement et en temps réel, d'une part l'évolution de l'extension spatiale de points d'eau d'intérêt, et d'autre part la superficie totale occupée par l'eau aussi bien sur un découpage administratif que sur une région définie par l'utilisateur.

En utilisant cette information ponctuelle de présence d'eau, HydroGenerator dresse des profils temporels donnant une information statistique temps réel du taux de remplissage des mares et des points d'eau de surface.

L'information du taux de remplissage est donnée par la superficie occupée par l'eau et comparée à la situation normale. La situation normale est calculée comme la moyenne saisonnière de la superficie sur l'ensemble des années disponibles entre 1998 et aujourd'hui.

5.1.2 Calcul de l'accessibilité à l'eau

En utilisant cette information ponctuelle de présence d'eau, HydroGenerator produit des cartes annuelles donnant une information statistique du temps de remplissage des mares et des points d'eau de surface sur un cycle annuel pondérée par la distance au point d'eau. Plus la position considérée se trouve proche d'un point d'eau et plus ce point d'eau est présent durant la période considérée ou période d'intégration, plus l'indice d'accessibilité est élevé. Le maximum de 1 d'indice d'accessibilité est atteint à la position exacte d'un point d'eau toujours présent.

Le cycle annuel de référence est défini par défaut suivant le cycle de saison de croissance de la végétation de début avril à fin mars de l'année suivante, l'utilisateur pouvant par ailleurs définir la période d'intégration de son choix.

La pondération fonction de la distance au point d'eau est établie suivant une gaussienne 2D définie par un paramètre : le rayon d'action. Typiquement, le rayon d'action est la distance maximale qu'est capable de parcourir un éleveur nomade pour trouver de l'eau, soit environs Rayon_Max = 30 km, au-delà de cette distance, le facteur est inférieur à 1%.

La Figure 26 montre l'allure de cette fonction de pondération.

Figure 26 – Gaussienne de pondération de l'indice de présence d'eau en fonction de la distance au point d'eau

$$F(d) = (1 - F_{BackGround}) \times e^{\frac{d^2}{2 \cdot \sigma^2} + F_{BackGround}}$$
(11)

Où :

- d est la distance au point d'eau
- σ est le facteur déterminant l'allure de la gaussienne de pondération
- FBackGround est le coefficient minimal de pondération

Dans les zones sous influence de plusieurs points d'eau, c'est la valeur de l'accessibilité au point d'eau le plus proche qui est retenue.

Optionnellement, une valeur minimale d'accessibilité FBackGround peut être considérée. Cette valeur FBackGround peut évoluer de manière paramétrable suivant les classes d'index d'aridité. FBackGround permet d'intégrer la notion qu'au Sud plus humide, l'accessibilité à l'eau est généralement toujours bonne, tandis qu'au nord plus sec, l'accessibilité à l'eau est très fortement liée à la détection d'eau de surface. Le coefficient FBackGround varie fonction de l'indice d'aridité AI (Figure 27) :

- Pour les zones au nord, arides à hyper-arides (AI<2), où l'impact de la présence d'eau est très important : FBackGround=0.3 soit 30%
- Pour les zones au sud, sub-humide (AI>5), où l'impact de la présence d'eau est peu ou n'est pas important : FBackGround=1.0 soit 100%

Figure 27 – Classes d'index d'aridité

Figure 28 – Evolution du facteur FBackGround en fonction de la latitude. Exemple pour un transect Sud-Nord à 0° de longitude.

Le facteur d'accessibilité est ainsi calculé pour chacune des décades SWB disponibles. Ensuite un moyennage sur la période d'intégration est réalisé pour obtenir les valeurs moyennes annuelles de l'accessibilité à l'eau pour chacun des pixels.

5.2 Utilisation du module HydroGenerator

L'utilisation de l'HydroGenerator est très similaire à l'utilisation du module BioGenerator, et s'appuie sur une structure de répertoires et de fichiers intrants et sortants.

5.2.1 Initialisation et espace disque nécessaire

La première étape consiste à télécharger et à incorporer à la base de données les nouvelles données SWB le cas échéant. Pour ce faire, l'utilisation du module DeCompressor est expliqué dans le chapitre 3.

L'espace disque nécessaire à l'exécution de HydroGenerator est d'environ 1 Go par année de données. Il convient à l'utilisateur de vérifier que l'espace disque est suffisant avant l'exécution.

5.2.2 Liste des points d'eau

La liste des points d'eau d'intérêt et dont les profils temporels décadaires et temps réel vont être produits, doit être rentrée dans le fichier Param/PondMonitor_List.txt. Ce fichier doit suivre une nomenclature stricte.

ID	Lat_min	Lat_max	Lon_min	Lon_max	Adm_lev	Adm_Cod	Nom
0001	15.6830	15.8970	-1.4600	-1.2630	0	00000	GOSSI
0002	19.3710	19.5040	0.56700	0.87900	0	00000	AGUELHOK
0003	16.0130	16.2900	-12.683	-12.424	0	00000	M'BOUT
0004	0.00000	0.00000	0.00000	0.00000	2	00014	KIDAL
0005	0.00000	0.00000	0.00000	0.00000	0	00138	MALI
0006	19.7285	19.7897	0.97970	1.09720	0	00000	IN'TANOUT
0007	12.9200	13.2520	-10.444	-10.241	0	00000	MANANTALI
8000	15.4984	15.6073	-0.5175	-0.4381	0	00000	IN'TILLIT
0009	11.5911	11.7564	42.3321	42.4724	0	00000	LAC ASSAL
0010	11.2036	11.2883	42.5319	42.6649	0	00000	GRAND BARRA
0011	11.0367	11.2859	41.6600	41.9038	0	00000	LAC_ABBE

La première colonne ID est une valeur d'identifiant du point d'eau. C'est cet identifiant qui sera réutilisé comme label et la nomenclature des fichiers de sortie.

Les colonnes Lat_min, Lat_max, Lon_min et Lon_max donnent respectivement les latitudes minimale et maximale, exprimées en degrés Nord (°N), et les longitude minimale et maximale, en degrés Est (°E), de la zone à considérer. Dans le cas où des valeurs nulles sont entrées pour les quatre champs c'est toute la fenêtre *Sub_Sahara* qui est considérée.

Les colonnes Adm_Lev et Adm_Cod donnent la possibilité de suivre les points d'eau sur un découpage administratif (ADM_n) ou bien sur un découpage vectoriel défini par l'utilisateur (GEO_n). Adm_Lev (0 à 5) indique quel découpage doit être utilisé (voir section 3.3), et Adm_Cod indique quelle valeur de masque doit être utilisée. La valeur du masque correspond à la colonne IDBIOHYDRO dans la table attributaire du fichier vectoriel. Une valeur Adm_Cod différente de 0 implique l'utilisation du fichier masque sélectionné.

Si un fichier masque est sélectionné (Adm_Cod différent de 0) en même temps qu'une fenêtre spatiale est définie (Lat_min, Lat_max, Lon_min et Lon_max pas tous égaux à 0), alors c'est l'intersection spatiale de cette fenêtre avec le masque qui est considérée.

5.2.3 Paramétrage

Ces paramètres sont accessibles et modifiables via le fichier Param/HydroGenerator_Param.txt :

```
Parametres HydroGenerator
30
            Dist Max km (Defaut : 30)
10
            Decade Debut Integration Decade Fin Integration (Defaut : 10 9)
    9
 0
     0
           Facteur PO Facteur P1 Forages Flag (Defaut : 0 0 0)
         0
 1
           Optimisation Compression Masque (Defaut : 1 1 0)
     1
         0
 1
     1
            Sorties Raw Garde Ancien (Defaut : 0 0)
```

- Le coefficient de la fonction de pondération du buffer spatial, ce coefficient défini le « rayon d'action » d'un point d'eau. C'est, schématiquement, la distance maximale que peut parcourir un éleveur pour trouver un point d'eau. <u>Dist_Max_km</u> (Valeur réelle, en km, entre 0 et 100)
- La période d'intégration sur le cycle annuel définie par la première et la dernière décade. Les valeurs rentrées correspondent au numéro de décade compris entre 1 et 36, la correspondance avec les dates est donnée par le Tableau 7. Dans le cas où la valeur de la décade de fin d'intégration est inférieure à celle de début d'intégration, l'intégration se fait jusqu'à la décade de l'année suivante. La période d'intégration doit au moins être égale à deux décades. Par exemple, dans le cas où l'analyse s'intéresse à l'ensemble de l'année sur le Sahel, on utilise les valeurs par défaut (Decade Debut Integration=10 et Decade Fin Integration=9). Dans le cas où l'analyse porte uniquement sur la saison des pluies pour le Sahel (Juillet-Octobre), les paramètres utilisés seront 19 et 30. Si l'analyse porte sur la saison sèche-chaude (Mars-Mai), le paramétrage sera 7 et 15.

Dans le cas où la valeur Decade_Debut_Integration est fixée à 0, alors la période d'intégration est définie sur le nombre de décades inscrit dans Decade_Fin_Integration et jusqu'à la dernière décade SWB disponible et déjà téléchargée et intégrée dans la base de données. Par exemple : si Decade_Debut_Integration=0 et Decade_Fin_Integration=9, l'intégration se fait sur 9 décades depuis les 9 décades précédant la dernière décade SWB déjà téléchargée.

Decade_Debut_Integration (Valeur entière entre 0 et 36)

Ce paramètre donne la décade de début d'intégration. La valeur 0 dans le cas d'une intégration à rebours de dernière décade téléchargée.

Decade_Fin_Integration (Valeur entière entre 1 et 36)

Ce paramètre donne la décade de fin d'intégration. Si la valeur 0 est inscrite dans le paramètre Decade_Debut_Integration, alors Decade_Fin_Integration est le nombre de décades intégrées jusqu'à la dernière décade téléchargée.

• Paramètre de définition du facteur FBackGround et d'activation de la prise en comptes des forages artificiels.

<u>Conversion_Facteur_P0</u> (Valeur réelle, en %, entre 0 et 100) Ce paramètre, exprimé en %, est le facteur d'accessibilité de fond pour les zones d'index d'aridité de AI-5 à AI-7.

<u>Conversion_Facteur_P1</u> (Valeur réelle, en %, entre 0 et 100) Ce paramètre, exprimé en %, est le facteur d'accessibilité de fond pour les zones d'index d'aridité de AI-1 à AI-2.

Forages_Flag (0 : Désactivé, 1 : Activé)

Ce paramètre active la prise en compte des forages artificiels dans le calcul de l'accessibilité (voir section 2.4).

 Le paramétrage d'optimisation permet d'accélérer le temps de calcul lors d'exécutions du module HydroGenerator successives, les étapes intermédiaires étant sauvegardées. En contrepartie, le volume de fichier stocké sur le disque est plus important. Le paramètre de compression permet de réduire la taille des fichiers raster *Geotiff* de sortie. Le paramétrage de masque active le découpage des fichiers rasters *Geotiff* de sortie suivant le *shapefile* MASK qui définit la zone d'intérêt (voir section 3.3). <u>Optimisation</u> (0 : Désactivé, 1 : Activé) Ce paramètre active ou désactive la fonction d'optimisation.

<u>Compression</u> (0 : Désactivé, 1 : Activé) Ce paramètre active ou désactive la fonction de compression des fichiers *Geotiff* de sortie.

<u>Masque</u> (0 : Désactivé, 1 : Activé) Activation ou désactivation du masque de la zone d'intérêt.

 Le paramétrage des sorties brutes est accessible. Ces fichiers sont stockés dans le répertoire Output/Raw/Water/ au format raw (.img) avec fichier header (.hdr).

<u>Sorties_Raw (</u>0 : Désactivé, 1 : Activé) Ce paramètre active ou désactive les sorties brutes de l'ensemble des champs Valeurs possibles : 0 (Désactivé), 1 (Activé)

Garde_Ancien (0 : Désactivé, 1 : Activé)

Ce paramètre active ou désactive la conservation des fichiers issus d'une session précédente. Si la conservation est activée, les nouveaux fichiers crées écrasent les anciens.

5.2.4 Exécution du programme

L'installation de MATLAB Compiler Runtime R2016a est nécessaire avant l'exécution du programme. Si nécessaire, il convient d'exécuter le programme d'installation : Libs/Utils/MCR_R2016a_win64_installer.exe

L'exécution du programme se fait simplement en double-cliquant sur le fichier exécutable HydroGenerator.exe. Une fenêtre d'exécution s'ouvre récapitulant les paramètres utilisés et l'ensemble des décades repérées et servant au calcul ainsi que le nombre d'années calculables à partir de cette série. Un compteur indique la progression du calcul en pourcentage.

Les phases de calcul se succèdent jusqu'à la fin de l'exécution. Le fichier Output/Water/Report/HydroGenerator_Report.txt enregistre sous un format texte les informations de la dernière exécution, y compris l'heure et la date du début de calcul.

Dépendamment du nombre de décade disponibles, de la vitesse du processeur et celle du disque dur, et des paramètres utilisés, le temps de calcul est d'environ 2 à 3 heures. La configuration minimale requise concerne essentiellement la mémoire vive disponible avec un minimum de 2 Go.

Command Prompt - HydroGenerator.exe	-	×
<pre>* HydroGenerator (v4.3) * * Action Contre la Faim (ACF-E) * * Erwann Fillol (2020) * * erwann.fillol@gmail.com * ***********************************</pre>		^
Initialisation : OK		
Integration : 0311 > 0501 Accessibilite : Dmax = 30.00 km Background : P0 = 0 % ; P1 = 0 % Nombre points : 13 Decades : 19990101 > 20200501 Annees : 1999 > 2020 Nombre decades SWB: 769		
Calcul du masque : 100 % Calcul access. : 100 % (2/2)		
Calcul principal : 100 % Ecriture : 100 % (4/4) Temps execution : 1 h 8 mm		
Operations terminees.		
		~

Figure 29 – Fenêtre d'exécution du module HydroGenerator

5.3 Fichiers de sortie

HydroGenerator produit des fichiers de sorties sous trois formats différents : un format image, un format tableur et un format vectoriel.

• Fichiers au format image

Les fichiers au format image sont au format *geotiff* (.tif), suivant une projection géographique Lat/Lon utilisant le datum WGS-84. La résolution est de 30" d'arc, soit environ 1 km. Les coordonnées limites de la fenêtre sont données dans le Tableau 1, ou bien, si l'option est activée, la fenêtre spatiale est réduite à la zone d'intérêt définie par le fichier MASK.

Le codage des données est au format réel 32 bits poids faible en tête (*32 bits little endian floating point*). De manière optionnelle, les fichiers de sortie peuvent être compressés.

• Fichiers au format tableur

Les fichiers au format tableur (.csv) sont visualisables avec un éditeur de texte ou bien avec logiciel tableur comme Excel. Le séparateur de colonne est le point-virgule.

• Fichiers au format vectoriel

Les fichiers au format vectoriel sont des *shapefile* (.shp) contenant des polygones avec une table attributaire. La projection est géographique Lat/Lon et utilisant le datum WGS-84.

5.3.1 Cartes de présence moyenne d'eau

Le module HydroGenerator produit des fichiers images des cartes statistiques de présence d'eau. La moyenne statistique de présence d'eau est représentée de deux façons distinctes :

- Le nombre d'années, exprimé en pourcentage du nombre d'années complètes, pendant lesquelles le pixel SWB est détecté en eau au moins une fois après filtrage. Cette statistique donne la fréquence d'apparition du pixel d'eau.
- Le nombre de décades moyen, exprimé en pourcentage du nombre de décades de la période d'intégration pendant laquelle le pixel SWB est détecté en eau. Le calcul est fait uniquement sur les années complètes. Cette statistique donne le temps moyen, ou période, d'apparition du pixel d'eau.

Fichiers	Répertoire	Nomenclature			
Fréquence	Output/Mater/Marc/	Frequency.tif			
Période	Output/water/Map/	Period.tif			

Les fichiers au format image sont au format geotiff (.tif).

Tableau 21 – Nomenclature des fichiers de moyenne de présence d'eau

Valeur	Signification	Unité					
[0 , 100]	Fréquence d'apparition du point d'eau	Pourcentage du nombre d'année					
[0 , 100]	Période d'apparition du point d'eau	Pourcentage du nombre de décade					
-9999	Océan, eau ouverte	-					
-9995	Valeur de masquage hors de la zone d'intérêt	-					

Tableau 22 – Signification des fichiers de statistiques moyennes de présence d'eau

Ces fichiers images des moyennes statistiques de présence d'eau peuvent aussi servir à visualiser les mares et points d'eau qui sont détectés par les SWB. Il est possible de s'appuyer sur ces fichiers images pour définir les coordonnées des points d'eau d'intérêts rentrées dans le fichier liste des points d'eau comme décrit dans la section 5.2.2.

Figure 30 – Carte de fréquence interannuelle d'apparition des points d'eau en pourcentage calculée entre 1998 et 2017

Figure 31 – Zoom sur le Nord Mali de la fréquence interannuelle d'apparition des points d'eau en pourcentage calculée entre 1998 et 2017

La Figure 30 et la Figure 31 montrent, à deux niveaux d'échelle, la fréquence d'apparition des points d'eau, année après année. En d'autres termes, on trouve en bleu foncé, c'est-à-dire pour des valeurs proches de 100%, les points d'eau qui apparaissent toutes les années. Ce calcul statistique de fréquence d'apparition se fait sans regard de la durée d'apparition du point d'eau au cours de la saison.

5.3.2 Indice d'accessibilité moyenne à l'eau

HydroGenerator produit une carte de l'indice d'accessibilité à l'eau calculé en moyenne sur l'ensemble des années disponibles.

L'unité de l'indice d'accessibilité est le facteur de forme gaussienne fonction de la distance au point d'eau moyenné sur la période de temps considérée appelé période d'intégration. Une valeur minimale 0 de l'indice correspond à une absence totale d'eau dans un rayon donné par le paramètre Rayon_Max, tandis qu'une valeur maximale 1 correspond à une présence permanente de l'eau à la position considérée.

Sur les zones d'eau ouverte (océans), la valeur est fixée à -9999. Si la fonctionnalité est activée, les zones extérieures à la zone d'intérêt définie par le masque sont fixées à -9995 (voir section 3.3).

Fichiers	Répertoire	Nomenclature				
Indice d'accessibilité moyen	Output/Water/Access/Mean/	Access_Mean.tif				

Tableau 23 – Nomenclature du fichier d'accessibilité moyenne

Valeur	Signification	Unité
[0 , 1]	Indice d'accessibilité	Sans unité
-9999	Océan, eau ouverte	-
-9995	Valeur de masquage hors de la zone d'intérêt	-

Tableau 24 – Tableau de valeur possible dans d'accessibilité moyen

Figure 32 – Carte d'indice de l'accessibilité à eau en moyenne calculé sur l'ensemble des années disponibles (1998-2017)

La Figure 32 montre l'indice moyen d'accessibilité à l'eau calculé entre 1998 et 2017. Sur cette carte, les zones en bleu correspondent aux endroits souvent proches de points d'eau, tandis que les zones jaunes montrent des endroits toujours éloignées de points d'eau.

5.3.3 Cartes d'anomalies annuelles de l'indice d'accessibilité à l'eau

Le module HydroGenerator produit des fichiers d'anomalie de l'accessibilité à l'eau pour chacune des années de la base de données.

L'anomalie est le rapport de l'indice d'accessibilité à l'eau calculé sur l'année *aaaa* suivant les paramètres de période d'intégration par rapport à la moyenne de cet indice calculée sur la même période de l'ensemble des années disponibles. L'anomalie est exprimée en pourcent (%) avec un seuillage maximal à 200%. Sur les zones où l'accessibilité à l'eau est toujours nulle (zones désertiques), la valeur de sortie du fichier d'anomalie est fixée à -9998.

Pour l'année en cours, et dont les décades SWB ne sont pas forcément disponible sur l'ensemble de la période d'intégration, le calcul des anomalies se fait uniquement sur la période disponible.

Sur les zones d'eau ouverte (océans), la valeur est fixée à -9999.

Si la fonctionnalité est activée, les zones extérieures à la zone d'intérêt définie par le masque sont fixées à -9995 (voir section 3.3).

Fichiers	Répertoire	Nomenclature
Anomalie Accessibilité	Output/Water/Access/	AccessAnomaly_aaaa.tif

Tableau 25 – Nomenclature des fichiers d'anomalies d'accessibilité à l'eau

Valeur	Signification	Unité				
[0 , 200]	Anomalie [%]	[%]				
-9999	Océan, eau ouverte	-				
-9998	Accessibilité toujours nulle	-				
-9995	Valeur de masquage hors de la zone d'intérêt	-				

Tableau 26 – Tableau de valeur possible

dans les fichiers d'anomalies d'accessibilité à l'eau

Figure 33 – Carte d'anomalie de l'accessibilité en eau pour les mois de mars à mai de l'année 2017 par rapport à la moyenne calculée entre 1998 et 2017

Figure 34 – Carte d'anomalie de l'accessibilité en eau sur le delta intérieur du Niger, pour les mois de mars à mai de l'année 2017 par rapport à la moyenne calculée entre 1998 et 2017

Sur la Figure 33 et la Figure 34, représentant des cartes d'anomalie de l'accessibilité à l'eau pour les mois de mars à mai (saison sèche) de l'année 2017, les zones en rouge présentent une accessibilité très inférieure à la normale, inversement les zones en bleu une accessibilité très supérieure tandis que les zones en jaune présentent une accessibilité proche de la normale. Sur ces cartes, les zones grises présentent une accessibilité toujours nulle sur la période, c'est-à-dire qu'aucun point d'eau n'a jamais été détecté dans le voisinage de la localisation sur toute la période considérée : ici la période de mars à mai entre 1998 et 2017.

5.3.4 Profils temporels de superficie

Les fichiers de sortie de profils temporels sont Output/Water/Report/Water_Pond_ID.csv, où ID est l'identifiant du point d'eau tel que défini dans la liste des points d'eau (voir section 5.2.2). En entête du fichier sont indiquées les informations suivantes :

- Le nom du point d'eau tel que défini dans la liste des points d'eau
- Les coordonnées latitude (°N) et longitude (°E) du barycentre du point d'eau
- Les extensions normales saisonnières maximales et minimales en km²

Le profil temporel d'extension du point d'eau est représenté de deux manières distinctes en deux blocs consécutifs. Le premier bloc est une représentation par années, le second est une représentation du profil continu. La représentation par années permet une comparaison interannuelle et avec les profils annuels normal (*Mean*), minimum (Min), maximum (Max) et l'écart type (Std). Ces valeurs de profils statistiques sont calculées pour chaque décade sur l'ensemble des années complètes disponibles.

Les graphiques de droites de la Figure 36 et de la Figure 37 montrent des exemples de comparaisons interannuelles. Les graphiques gauches de ces mêmes figures montrent les profils continus sur toute la période disponible.

.a] - i	A B	c	D	E	F	G	н	1.1	J	K	L	м	N	0	P	Q	R	S	T	U	v	W	X	Y	Z	AA
1	Name:	GOSSI																								
2	LatiddNI:	15.8	1																							
3	Lon(ddN)	-1.83	1																							
4	Mavisokmi	83.0	2																							
5	Min[sakm]	34.6	3																							
6	and a description of a																									
7																										
	Dekad	Date	Mana	Min	Max	Ca.d	1008	1000	2000	2001	1003	2002	2004	2005	2005	2007	1008	2000	2010	2011	2012	2012	2014	2015	2016	2017
0	Dekau	Oline	10 A	2 24.5	2 50.04	9.59	1990	20.62	43.46	2001	2002	2003	50.04	42,45	46.33	46.33	47.17	45.39	2010	42.20	2012	2013	2014	2013	2010	2017
2	-	U1-jai	V 30.4	24.3	2 30.94	0.00		35.02	42.43	24.3	31.13	37.75	30.94	42.43	40.22	40.22	47.17	43.20	30	43.35	20.3	20.3	27.33	20.41	37.73	24.32
10		11-jar	N 36.7	4 22.6	4 52.83	9.09		36.79	38.67	33.96	27.35	33.96	48.11	33.96	45.28	49.05	44.34	45.28	52.83	42.45	29.24	26.41	26.41	25.47	35.84	22.64
11		21-jar	V 36.8	9 21.6	9 52.83	9.96		36.79	35.84	34.9	26.41	31.15	48.11	32.07	45.28	46.22	49.99	48.11	52.83	49.05	29.24	25.47	28.3	25.47	33.96	21.69
12	4	01-fe	r 35.	6 19.8	1 50	10.14		36.79	32.07	34.9	31.13	33.96	50	32.07	45.28	44.33	47.16	48.11	48.11	45.28	30.18	19.81	19.81	24.52	32.07	20.75
13	5	11-fe	ar 32.9	6 11.3	2 47.16	11.31		35.84	33.01	35.84	30.18	32.07	47.16	30.18	47.16	45.28	46.22	45.28	36.79	45.28	24.52	17.92	18.85	22.64	11.32	20.75
14	6	5 21-fe	r 32.2	2 11.3	2 48.11	11.37		34.9	32.07	34.9	33.01	31.13	44.33	23.58	47.16	43.39	45.28	48.11	36.79	43.39	21.69	14.15	22.64	23.58	11.32	20.75
15	7	01-mai	s 31.8	7 10.3	7 47.16	10.85		30.18	34.9	24.52	29.24	30.18	45.28	19.81	43.39	44.33	43.39	44.33	47.16	38.67	20.75	10.37	22.64	23.58	32.07	20.75
16	8	11-mai	s 29.8	4 14.1	5 46.22	9.93		23.58	32.07	23.58	25.47	30.18	42,45	22.64	42.45	40.56	33.96	39.62	46.22	41.5	27.35	16.03	21.69	14.15	25.47	17.92
17	9	21-mai	s 28.4	5 13.	2 44.33	9.4		25.47	31.13	31.13	22.64	26.41	42.45	25.47	44.33	37.73	31.13	37.73	29.24	42.45	22.64	13.2	22.64	13.21	25.47	16.03
18	10	01-a	r 26.3	6 4.7	2 44.33	10.87		31.13	29.24	25.47	15.09	24.52	39.62	20.75	41.5	29.24	35.84	44.33	29.24	37.73	16.04	10.38	19.81	16.98	29.24	4.72
19	11	11-3	r 22.8	7 2.8	3 38.67	10.56	12.26	25.47	27.35	22.64	15.09	24.52	37.73	19.81	38.67	19.81	34.9	38.67	27.36	32.07	10.38	9.43	16.98	12.26	29.24	2.83
20	12	21-8	r 20.9	4 6.	6 36.79	8.87	20.75	18.86	25.47	21.69	17.92	18.86	36.79	17.92	29.24	24.52	33.01	33.96	21.7	27.35	8.49	6.6	13.21	10.38	25.47	6.6
21	13	01-ma	i 17/	4 2.8	3 33.96	8.57	14.15	12.26	19.81	21.69	16.03	17.92	33.01	7.55	18.87	26.41	19.81	26.41	16.98	33.96	9.43	2.83	13.21	6.6	23.58	7.55
22	14	11-mi	i 15.5	2 3.7	7 32.07	8.66	7.55	6.6	18.86	18.86	16.98	18.86	32.07	10.38	24.52	25.47	13.21	17.92	14.15	31.13	4.72	3.77	10.38	6.6	22.64	5.66
23	15	21-m	13.6	8	0 28.3	7.58	7.55	11.32	16.98	16.03	12.26	6.6	21.7	10.38	28.3	18.87	22.64	14.15	22.64	16.03	3.77	0	9.43	6.6	22.64	5.66
24	16	01-iui	9.4	3	0 23.58	6.97	16.04	7.55	11.32	7.55	7.55	0	15.09	0	20.75	17.92	6.6	23.58	15.09	3.77	2.83	0	9.43	4.72	13.21	5.66
25	17	11-juj	0 8.9	1	0 22.64	6.62	22.64	0.94	10.38	8.49	0	0	12.26	0	17.92	14.15	8.49	16.98	16.04	13.2	5.66	2.83	8.49	3.77	10.38	5.66
26	19	21.00	10.7	1	0 33.01	9.1	18.21	0.54	11 32	33.01	0	0.94	2.83	8.77	6.6	14.15	21.69	14.15	16.08	27.85	5.66	2.83	8.49	4.72	10.38	16.04
27	10	01.00	10.7		0 00.01	11.01	31.7	0	0.43	40.54	4 73	13.54	2.00	13.76	8.00	13.36	22.05	33.58	21.7	22.00	5.00	2.00	8.40	1.00	23.64	20.04
28	19	11 in	10.3	2 20	9 41.5	11.51	22.7	2.62	9.43	40.56	4.76	41.5	84.0	210	16.02	12.20	22.04	23.30	26.41	10.55	16.04	24.53	15.00	3.00	24.64	97.73
20	20	11-ju	24.5	- 20	C 11-0	11.75	27.35	2.03	0.47	41.5	0.0	41.5	24.5	24.5	10.03	15.05	27.35	21.7	20.41	40.30	10.04	29.32	10.05	23.30	29.32	57.75
69	41	21-ju	33.9	0 0.	0 04.13	15.95	27.50	22.04	0.0	48.11	22.7	49.05	34.9	64.13	10.57	23,47	21.55	24.55	33.90	34.72	57.55	29.24	19.81	38.67	29.24	55.77
30	22	01-800	47.	5 8.4	9 80.19	17.66	39.62	66.04	8.49	63.2	46.22	49.05	42.45	76.41	22.64	53.77	31.13	33.90	50	80.19	67.93	42.45	32.07	46.22	51.88	46.23
31	23	11-30	it 56.3	2 41.5	1 83.02	10.52	51.88	64.15	54.71	57.54	66.03	67.92	41.51	83.02	45.59	66.03	56.6	49.06	54./1	57.55	66.98	43.39	45.59	57.55	47.16	55.77
32	24	21-800	10 50.	7 36.7	9 79.24	10.86	46.22	65.09	67.92	62.26	60.37	75.47	45.28	79.24	49.05	66.03	57.54	61.32	55.66	52.83	48.11	47.17	46.22	60.37	36.79	50.94
33	25	01-seg	it 56.4	6 38.6	8 68.87	11.18	41.51	62.26	61.32	63.2	63.2	68.87	49.05	68.87	68.87	63.2	67.92	60.37	62.26	67.92	48.11	49.99	40.56	41.51	41.51	38.68
34	26	11-seg	rt 54.5	2 34.	9 77.36	11.6	46.22	47.17	58.49	61.32	67.92	64.15	49.05	55.66	61.32	60.37	77.36	61.32	65.09	64.15	51.88	34.9	38.68	42.45	48.11	34.9
35	27	21-seg	it 54.	1 33.0	1 75.47	12.03	60.37	45.28	54.71	59.43	60.37	72.64	48.11	59.43	63.2	60.38	75.47	65.09	65.09	51.89	46.22	33.01	40.56	46.22	39.62	34.9
36	28	01-o	t 52.1	7 33.9	6 66.03	10.86	58.49	58.49	52.82	50.94	54.71	60.37	47.16	66.03	64.15	55.66	63.2	63.2	63.2	50.94	41.5	33.96	35.84	53.77	34.9	33.96
37	29	11-0	t 49.7	6 32.0	7 64.15	10.24	57.54	51.88	46.22	46.22	51.88	58.49	48.11	64.15	60.37	58.49	57.54	55.66	63.2	46.22	40.56	33.96	34.9	53.77	33.96	32.07
38	30	21-0	t 46.8	3 29.2	4 60.37	10.29	49.99	48.11	46.22	44.33	50.94	59.43	43.39	58.49	56.6	55.66	57.54	54.71	60.37	43.39	33.01	36.79	31.13	47.16	30.18	29.24
39	31	01-m	v 44.4	3 29.2	4 58.49	9.89	47.16	48.11	46.22	42.45	42.45	54.71	44.33	55.66	48.11	52.83	53.77	58.49	56.6	46.22	30.18	30.18	30.18	42.45	29.24	29.24
40	32	11-nc	v 42.	4 26.4	1 55.66	9.36	46.22	46.22	42.45	42.45	44.33	51.88	46.22	52.83	50	43.39	51.88	55.66	51.88	36.79	32.07	26.41	31.13	42.45	26.41	27.35
41	33	21-nc	v 41.3	1 22.6	4 56.6	10.03	43.39	33.96	42.45	42.45	41.5	50	44.33	56.6	53.77	40.56	52.83	50.94	49.05	34.9	22.64	26.41	30.18	43.39	25.47	
42	34	01-dé	c 42.2	5 21.6	9 59.43	10.64	42.45	33.96	40.56	38.67	40.56	50.94	42.45	51.88	53.77	52.83	59.43	50.94	55.66	33.96	21.69	31.13	30.18	44.33	27.35	
43	35	11-de	c 39.7	2 23.5	8 53.77	9.11	40.56	41.5	29.24	34.9	36.79	48.11	42.45	48.11	49.05	51.88	53.77	49.05	44.34	31.13	27.35	32.07	29.24	41.5	23.58	
44	36	21-di	c 38.7	7 23.5	8 50.94	8.96	40.56	41.5	25.47	30.18	36.79	50.94	42.45	48.11	44.34	50.94	47.17	49.05	42.45	30.18	29.24	32.96	27.35	42.45	23.58	
45																										
46																										
47																										
40	Date	Arealcoke																								
40	11/04/1004	meal2dkn	4																							
50	21/04/1998	20.7	e 5																							
50	21/04/1998	20.7																								
51	01/05/1998	14.1	2																							
52	11/05/1998	7.5	0																							
53	21/05/1998	7.5	5																							
54	01/06/1998	16.0	4																							
55	11/06/1998	22.6	4																							
56	21/05/1998	13.2	1																							
57	01/07/1998	3 21	7																							

Figure 35 – Fichier de sortie pour un point d'eau (mare de Gossi)

ACTION CONTRE LA FAIM | ACTION AGAINST HUNGER | Bureau Régional pour l'Afrique de l'Ouest www.actionagainsthunger.org | www.actioncontrelafaim.org | www.accioncontraelhambre.org www.sigsahel.info

Figure 36 – Profils temporels de superficie de la mare de Gossi au Mali, en représentation continue (à gauche) et en comparaison interannuelle (à droite)

Figure 37 – Profils temporels de superficie d'eau sur de Aguelhok au Mali, en représentation continue (à gauche) et en comparaison interannuelle (à droite)

5.3.5 Profils temporels d'anomalie annuelle de la présence d'eau

HydroGenerator produit des fichiers de sortie de l'anomalie annuelle de présence d'eau moyen suivant les découpages administratifs ADM_n et suivant des découpages définis par l'utilisateur GEO_n.

Les fichiers de sorties, présentés dans le Tableau 27, sont au format .csv et le pointvirgule est utilisé comme séparateur de colonnes. Ces fichiers peuvent être directement ouverts par un logiciel tableur tel Excel.

Champs	Découpage	Répertoire	Fichier				
	ADM_0		Water_ADM_0.csv				
	ADM_1		Water_ADM_1.csv				
Anomalie annuelle	ADM_2	Output/Matar/Dapart/	Water_ADM_2.csv				
de présence d'eau	GEO_3	Output/water/Report/	Water_GEO_3.csv				
	GEO_4		Water_GEO_4.csv				
	GEO_5		Water_GEO_5.csv				

Tableau 27 – Fichiers de sorties des anomalies annuelles de présence d'eau

La Figure 38 montre un extrait du fichier de sortie pour l'accessibilité à l'eau suivant le découpage administratif de niveau 0 (Pays). Dans chacun des fichiers, un entête rappelle le fichier masque source, le nombre d'entités repérées et l'unité des valeurs de sortie.

L'anomalie de présence d'eau est exprimée en % de la superficie moyenne de présence d'eau. La valeur flag -1 est indiquée sur les zones où l'eau n'est jamais détectée (superficie toujours nulle).

Figure 38 – Extrait du fichier de sortie de de présence d'eau Output/Water/Report/Water_ADM_0.csv

A partir de ces fichiers de sortie il est possible de tracer l'évolution temporelle de l'anomalie de présence d'eau en moyenne sur différents niveaux administratifs (ADM_n.shp) ou bien sur les découpes utilisateurs (GEO_n.shp). La Figure 39 est un exemple de profils calculé sur le Mali.

Figure 39 – Profil temporel de l'anomalie annuelle de la présence d'eau, calculée sur la période début avril à fin mars, sur le Mali

ACTION CONTRE LA FAIM | ACTION AGAINST HUNGER | Bureau Régional pour l'Afrique de l'Ouest www.actionagainsthunger.org | www.actioncontrelafaim.org | www.accioncontraelhambre.org www.sigsahel.info

5.3.6 Profils temporels d'anomalie annuelle de l'accessibilité à l'eau

HydroGenerator produit des fichiers de sortie de l'anomalie d'accessibilité à l'eau moyenne suivant les découpages administratifs niveaux 0, 1 et 2, et suivant des découpages définis par l'utilisateur.

Champs	Découpage	Répertoire	Fichier				
	ADM_0		Access_ADM_0.csv				
	ADM_1		Access_ADM_1.csv				
A accesibilité à l'acu	ADM_2	Output/Matar/Dapart/	Access_ADM_2.csv				
Accessionne a reau	GEO_3	Output/water/Report/	Access_GEO_3.csv				
	GEO_4		Access_GEO_4.csv				
	GEO_5		Access_GEO_5.csv				

Tableau 28 – Fichiers de sorties de anomalies d'accessibilité à l'eau

Les fichiers de sortie, présentés dans le Tableau 28, sont au format .csv et le pointvirgule est utilisé comme séparateur de colonnes. Ces fichiers peuvent être directement ouverts par un logiciel tableur tel Excel.

La Figure 40 montrent des extraits du fichier de sortie pour l'accessibilité à l'eau suivant le découpage administratif de niveau 0 (Pays). L'entête rappelle le fichier masque source, le nombre d'entités repérées et l'unité des valeurs de sortie.

L'accessibilité est exprimée en % de l'indice d'accessibilité moyen (unité). La valeur flag -9999 est indiquée sur les zones où l'indice d'accessibilité est toujours égal à zéro.

-a) (4	8	c)	E	P.	6	н	1	1	ĸ	L	M	N	0	р	9	R	5	T	U	v	w	x	Y
1	Source:	Lib\Ancilla	ry/img\AD	M_0.in	mg																				
2	Nb_entities:		9																						
3	Water_Acces	id [96]																							
4	NAME	IDBIOHYDE	O AREA(s	qkm]	ACCESS_MEAN	ACCESS_1998	ACCESS_199	9 ACCESS_200	ACCESS_2001	ACCESS_2002	ACCESS_2003	ACCESS_2004	ACCESS_2005	ACCESS_2006	ACCESS_2007	ACCESS_2008	ACCESS_2009	ACCESS_2010	ACCESS_2011	ACCESS_2012	ACCESS_2013	ACCESS_2014	ACCESS_2015	ACCESS_2016	ACCESS_2017
6	Chad		1 1	268197	0.057	80.701	93.3	19 101.5	95.684	98.988	82.796	85.472	87.093	91.563	98.895	102.95	5 102.056	92.564	95.638	92.751	113.024	127.318	8 116.02	116	118.234
7	Senegal		2	195555	0.137	83.324	86.81	15 94.93	96.185	89.118	79.851	100.496	98.857	97.093	91.263	98.0	8 100.75	99.312	104.554	95.049	111.335	121.353	3 106.18	5 122.92	115.413
8	Niger		3 1	182164	0.025	83.722	92.97	2 96.33	87.087	87.208	83.381	78.488	80.956	85.016	5 86.577	92.09	7 91.269	80,474	101.927	83.841	103.711	141.336	6 145.08	8 147.393	143.179
9	Nigeria		4	908919	0.265	87.813	97.6	54 99.9	103.358	99.05	96.521	89.124	89.04	94.123	94,529	91.77	9 97.766	96.523	99.514	92.645	109.771	122.394	4 110.14	5 110.996	112.29
10	Cameroon		5 .	468186	0.184	110.771	94.81	114.57	104.331	95.07	95.764	102.976	84.1	86.045	100 568	99.92	7 98.927	100.799	96.674	95.41	91.681	112.301	1 97.11	101 267	122.649
11	Mali		6 1	248110	0.068	90.3	92.03	18 96.37	3 92.596	94.707	88.645	95.107	88.347	92.73	94.171	97.32	8 100.71	95.216	101.004	95.04	107.54	118.85	5 113.4	123.859	117.712
12	Burkina_Fas	c	7	274632	0.087	64,915	71.66	6 71.47	66.582	70.117	74,984	99.405	77.056	76.70	101.627	78.11	2 108.371	93,411	108.957	94.04	129.383	172.303	3 121.76	7 153.56	153.633
13	Mauritania		8 1	042035	0.026	80.195	83.74	15 96.1	12 100.234	94,408	67.915	80.138	76.151	78.14	88.116	92.95	1 84.608	95.463	104,587	93.944	106.93	147.734	4 137.1	145.122	157.038
10.00			1.2.1				2 2 a a b a									Complete State				a stand has					

Figure 40 – Extrait du fichier de sortie de d'accessibilité à l'eau Output/Water/Report/Access_ADM_0.csv

A partir de ces fichiers de sortie, il est possible de tracer l'évolution temporelle de l'anomalie de l'indice d'accessibilité à eau en moyenne sur différents niveaux administratifs et sur les découpes utilisateurs. La Figure 41 est un exemple de profil calculé sur le Mali.

5.3.7 Sorties vectorielles

HydroGenerator produit des sorties vectorielles des valeurs d'anomalies annuelles de l'indice d'accessibilité à l'eau. Les découpages vectoriels utilisés sont ADM_0, ADM_1, ADM_2 ainsi que GEO_3, GEO_4, GEO_5 et WATER tel que décrit dans le paragraphe 3.3.

Les sorties au format vectoriel *shapefile* (.shp) se trouvent dans le répertoire Output/Water/Shape/. Dans la table attributaire sont contenus les informations déjà décrites dans le paragraphe 5.3.6 concernant les sorties .csv.

Dans le cas où l'option « Profils » est activée (voir section 4.2.2), la table attributaire est complétée par les valeurs de superficies en eau décadaires sur chaque polygone composant le fichier vectoriel. En plus de ces valeurs décadaires, sont inscrits dans la table attributaire, pour chacune des 36 décades de l'année, les valeurs statistiques interannuelles de superficie moyenne, minimale et maximale ainsi que l'écart type. Le Tableau 29 répertorie l'ensemble des variables inscrites dans la table attributaire des fichiers vecteurs en sortie de HydroGenerator.

Le fichier WATER est utilisé pour suivre l'évolution décadaire en temps réel de la superficie des points d'eau. Chacun des points d'eau étant défini par un polygone dans fichier *shapefile* WATER.shp (voir paragraphe 3.3). Dans la table attributaire du fichier de sortie HYDRO_WATER.shp n'apparaissent que les colonnes concernant les superficies d'eau décadaires et statistiques de remplissage décadaires.

Nom	Description	Fréquence	Unité	
Area	Superficie du polygone		Km ²	
YEAR_FIRST	Première année de la série	l la janua	Annéa	
YEAR_LAST	Dernière année de la série	Unique	Annee	
A_MEAN	Accessibilité à l'eau moyenne interannuelle		Sans unité	
A_ANO_aaaa	Anomalie annuelle de l'accessibilité à l'eau	Annuelle	%	
W_MEAN	Superficie d'eau moyenne interannuelle sur la période d'intégration	Unique	km²	
W_ANO_aaaa	Anomalie annuelle de superficie d'eau	Annuelle	%	
SWB_MEA_dd	Moyenne interannuelle de superficie d'eau décadaire pour la décade dd			
SWB_MIN_dd	Minimale interannuelle de superficie d'eau pour la décade dd	Décadaire	kuna 2	
SWB_MAX_dd	Maximale interannuelle de superficie d'eau pour la décade dd	36 valeurs	KM ²	
SWB_STD_dd	Ecart type interannuel de la superficie d'eau pour la décade dd			
SWB_FIRST	Première décade de la série temporelle	Unique	aaaadd	
SWB_LAST	Dernière décade de la série temporelle	Unique	888800	
SWB_aaaadd	Superficie d'eau pour la décade dd de l'année aaaa	Décadaire	km²	

Tableau 29 – Composition de la table attributaire des fichiers vecteurs de sortie de HydroGenerator

La Figure 42 montre un affichage de type vectoriel l'anomalie de l'indice d'accessibilité à l'eau pour la période sèche de mars à mai de l'année 2017. Sur cette figure, concernant le delta intérieur du Niger, le découpage vectoriel de référence est au niveau administratif 2 (département ou cercle). Cette carte fait apparaitre une anomalie positive de l'indice d'accessibilité à l'eau sur la zone sud du delta intérieur du Niger. Ce résultat corrobore la lecture positive pour l'année 2017 sur le Mali déjà visualisée sur la Figure 41.

Figure 42 – Carte d'anomalie de l'accessibilité en eau pour l'année 2017, en représentation vectorielle, sur le découpage administratif de niveau 2, sur le delta intérieur du Niger, calculée sur la période sèche de début mars à fin mai, par rapport à la moyenne calculée entre 1998 et 2017

La Figure 43 montre un affichage de type vectoriel de l'anomalie de présence d'eau pour les mois de mars à mai de l'année 2017. La moyenne de présence d'eau est calculée sur la période 1998 à 2017. Sur cette figure, concernant le delta intérieur du Niger, le découpage vectoriel de référence est au niveau administratif 2 (département ou cercle).

Figure 43 – Anomalie de présence d'eau pour la période de mars à mai de l'année 2017 par rapport à la moyenne calculée entre 1998 et 2017

Sur la Figure 43 montre l'anomalie de présence d'eau pour l'année 2017, sur la période de la saison sèche de mars à mai, pour chaque unité administrative de niveau 2 (département ou cercle). Sur cette carte apparaissent en bleu les zones où l'eau est plus présente et en rouge les zones où elle l'est moins par rapport à la moyenne calculée entre 1998 et 2017. Sur les zones en gris, l'eau n'est jamais détectée durant la période. Contrairement au calcul de l'accessibilité à l'eau tel que le fait l'HydroGenerator (voir chapitre 5), ce calcul d'anomalie de présence d'eau ne prend en compte la répartition de l'eau sur la zone considérée mais uniquement la superficie.

5.4 Exemple d'utilisation

Cette section montre quelques exemples d'utilisation du module HydroGenerator. Les étapes sont décrites pas-à-pas.

5.4.1 Création de la carte d'anomalie d'accessibilité à l'eau

Cet exemple d'utilisation montre comment établir une carte d'anomalie de l'accessibilité à l'eau pour les mois de mars à mai de l'année 2017, correspondant à la période sèche-chaud sur le Sahel. Cette analyse apporte des informations utiles pour mesurer les conditions accessibilité à l'eau pendant la saison sèche et chaude, généralement la période la plus difficile pour les éleveurs sur le Sahel.

- <u>Téléchargement et incorporation des nouvelles décades SWB disponibles :</u> Les nouvelles décades disponibles doivent être téléchargées en suivant les instructions contenues dans le chapitre 3.
- Paramétrage : Le choix des paramètres est important pour déterminer la période d'intégration du calcul de l'anomalie d'accessibilité. En suivant les instructions de la section 5.2.3 et en s'appuyant sur le Tableau 7, les paramètres Decade_Debut_Integration et Decade_Fin_Integration doivent être fixés respectivement à 7 et 15 pour couvrir les mois de mars à mai.
- 3. <u>Exécution du programme</u> : On procède à l'exécution du programme en suivant les instructions de la section 5.2.4
- 4. <u>Utilisation d'un logiciel SIG pour la création de la carte</u>: L'utilisation d'un logiciel SIG tel QGIS permet d'afficher et de mettre en forme la carte. Un modèle de projet QGIS peut-être trouvé dans le répertoire GIS/QGIS Project/. Le fichier *geotiff* à récupérer et à afficher est le fichier d'anomalie d'accessibilité à l'eau pour 2017 tel que décrit dans la section 5.3.3.

Figure 44 – Anomalie de l'accessibilité à l'eau pour les mois de mars, avril et mail de l'année 2017 sur l'ouest-africain

5.4.2 Suivi du taux de remplissage de la marre d'eau

Cet exemple d'utilisation montre comment établir le profil temporel du taux de remplissage d'un nouveau point d'eau. Ce nouveau point d'eau est le lac Faguibine dans la région de Tombouctou au Mali.

- <u>Téléchargement et incorporation des nouvelles décades SWB disponibles :</u> Les nouvelles décades disponibles doivent être téléchargées en suivant les instructions contenues dans le chapitre 3.
- Première exécution de HydroGenerator : Une première exécution de HydroGenerator est nécessaire afin de créer les cartes statistiques de présence d'eau à partir desquelles sera localisé le nouveau point d'eau à incorporer à la liste. Ici l'utilisation des paramètres pas défaut est recommandée, en particulier les paramètres Decade_Debut_Integration et Decade_Fin_Integration qui doivent couvrir une année entière.
- <u>Visualisation de la fréquence d'apparition du point d'eau :</u> La visualisation du fichier geotiff « fréquence » (voir section 5.3.1) dans un logiciel SIG tel QGIS permet d'identifier le point d'eau d'intérêt, ici le lac Faquibine, et de relever les coordonnées de latitudes et de longitudes minimales et maximales délimitant la position du point d'eau (Figure 45)

Figure 45 – Visualisation de la carte de fréquence d'apparition des points d'eau avec QGIS, repérage du Lac Faquibine

4. <u>Edition du fichier de points d'eau :</u> Les coordonnées de ce nouveau point d'eau d'intérêt doivent être rentrées dans le fichier liste des points d'eau d'intérêt (section 5.2.2). Ici le nouveau point d'eau prend l'ID 12. On s'intéresse uniquement à la zone délimitée par les coordonnées, en conséquence les paramètres Adm_Lev et Adm_Cod doivent être rentrés à 0.

ID	Lat min	Lat max	Lon min	Lon max	Adm lev	Adm Cod	Nom
0001	15.6830	15.8970	-1.4600	-1.2630	0 —	00000	GOSSI
0002	19.3710	19.5040	0.56700	0.87900	0	00000	AGUELHOK
0003	16.0130	16.2900	-12.683	-12.424	0	00000	M'BOUT
0004	0.00000	0.00000	0.00000	0.00000	2	00014	KIDAL
0005	0.00000	0.00000	0.00000	0.00000	0	00138	MALI
0006	19.7285	19.7897	0.97970	1.09720	0	00000	IN'TANOUT
0007	12.9200	13.2520	-10.444	-10.241	0	00000	MANANTALI
8000	15.4984	15.6073	-0.5175	-0.4381	0	00000	IN'TILLIT
0009	11.5911	11.7564	42.3321	42.4724	0	00000	LAC ASSAL
0010	11.2036	11.2883	42.5319	42.6649	0	00000	GRAND_BARRA
0011	11.0367	11.2859	41.6600	41.9038	0	00000	LAC_ABBE
0012	16.7191	16.8303	-4.0490	-3.7748	0	00000	LAC_FAGUIBINE

5. <u>Exécution de HydroGenerator :</u> Une nouvelle exécution de HydroGenerator est nécessaire pour réaliser les calculs en prenant en compte ce nouveau point d'eau d'intérêt. Une attention particulière doit être apportée au paramétrage des Decade_Debut_Integration et Decade_Fin_Integration qui doivent couvrir une année entière en centrant le mieux possible la saison des pluies. Ici, on conserve les paramètres par défaut qui centrent convenablement la mousson ouest-africaine (Decade_Debut_Integration=10 et Decade_Fin_Integration=9). 6. <u>Visualisation du fichier de sortie, et profil temporel :</u> L'étape ultime consiste à visualiser le fichier de sortie sous un tableur tel Microsoft Excel et à tracer le profil temporel. Le fichier de sortie en récupéré suivant la méthode décrite dans la section 5.3.4. Le fichier peut être lu directement par Excel.

Figure 46 - Fichier sortie tableur pour le point d'eau « Lac Faguibine »

Figure 47 – Profil temporel du remplissage du Lac Faguibine

5.4.3 Création d'une carte vectorielle statistique de présence d'eau

Cet exemple décrit comment établir une carte vectorielle au niveau administratif 1 (région) de l'anomalie de présence d'eau durant la saison sèche mars à mai pour l'année 2017.

- <u>Téléchargement et incorporation des nouvelles décades SWB disponibles :</u> Les nouvelles décades disponibles doivent être téléchargées en suivant les instructions contenues dans le chapitre 3.
- <u>Paramétrage</u>: Le choix des paramètres est important pour déterminer la période d'intégration du calcul de l'anomalie. En suivant les instructions de la section 5.2.3 et en s'appuyant sur le Tableau 7, les paramètres Decade_Debut_Integration et Decade_Fin_Integration doivent être fixés respectivement à 7 et 15 pour couvrir les mois de mars à mai.
- 3. Exécution du programme : En suivant les instructions de la section 5.2.4
- 4. <u>Utilisation d'un logiciel SIG pour la création de la carte</u>: L'utilisation d'un logiciel SIG tel QGIS permet d'afficher et de mettre en forme la carte. Un modèle de projet QGIS peut-être trouvé dans le répertoire GIS/QGIS Project/. Le fichier shapefile à récupérer est le fichier vectoriel d'anomalie de présence d'eau HYDRO_ADM_1.shp tel que décrit dans la section 5.3.7. Dans ce fichier la table attributaire donne l'anomalie de présence d'eau pour chacune des années disponibles et exprimé en % par rapport à la normale. Il convient alors d'afficher le fichier vectoriel en sélectionnant la colonne de la table attributaire correspondant à l'anomalie de présence d'eau pour 2017 (voir Tableau 29) suivant un dégradé de couleur approprié.

Figure 48 – Anomalie de présence d'eau de surface pour les mois de mars, avril et mai de l'année 2017 sur l'Ouest-Afrique

6 AutoRun

Le module AutoRun (v1.4) est un programme qui permet l'exécution de DeCompressor, BioGenerator et HydroGenerator de manière automatique. Dans l'objectif d'une production en temp réel, AutoRun gère le lancement successif des programmes aussitôt que de nouvelles décades DMP, NDVI et SWB sont disponibles.

6.1 Principes de fonctionnement

Les données décadaires DMP, NDVI ou SWB sont normalement disponibles à partir du lendemain de la fin de période décadaire couverte (voir chapitre 2). En d'autres termes, à partir des 1^{er}, 11 et 21 de chaque mois une nouvelle décade DMP, NDVI ou SWB peut être disponible pour le téléchargement.

Le programme AutoRun, synchronisé avec l'horloge du système, se mets en attente de ces périodes. Lorsque que de nouvelles décades sont susceptibles d'être disponibles, AutoRun lance le programme DeCompressor chaque heure pleine pour vérifier la disponibilité des nouvelles décades et tenter le téléchargement.

Dans le cas d'un téléchargement réussi d'une nouvelle décade DMP, AutoRun lance le programme BioGenerator. D'une même manière, dans le cas d'un téléchargement réussi d'une décade SWB, c'est le programme HydroGenerator qui est exécuté.

Le programme AutoRun dispose en outre d'une fonction de recopie des sorties après chaque exécution de BioGenerator et d'HydroGenerator. Cette fonction de recopie permet de pousser les fichiers vers une base de données tel que GeoServer par exemple. La liste des fichiers recopiés se trouve dans le fichier File_Push.txt. La recopie se comporte comme une la fonction copie de fichier du système à la différence qu'aucun message d'erreur n'est communiqué (voir section 6.2.2).

6.2 Paramétrage

Les programmes DeCompressor, BioGenerator et HydroGenerator prennent leurs paramètres respectifs tel que décrit dans les chapitres relatifs à chacun des programmes (sections 3.4, 4.2.2 et 5.2.3).

6.2.1 Paramétrage général d'AutoRun

Le paramétrage de AutoRun donne la possibilité d'activer l'un et/ou l'autre des programmes BioGenerator et HydroGenerator. Ces paramètres sont accessibles et modifiables via le fichier Param/AutoRun_Param.txt.

```
Parametres AutoRun

1 1 BioGenerator HydroGenerator (Defaut : 1 1)

0 FilePush (Defaut : 0)
```

<u>BioGenerator</u> (0 : Désactivé, 1 : Activé) Ce paramètre active ou désactive le programme BioGenerator

<u>HydroGenerator</u> (0 : Désactivé, 1 : Activé) Ce paramètre active ou désactive le programme HydroGenerator

<u>FilePush</u> (0 : Désactivé, 1 : Activé) Ce paramètre active ou désactive la fonction de recopie des sorties du BioGenerator et de l'HydroGenerator

6.2.2 Paramétrage de la fonction de recopie

Le fichier Param/File_Push.txt contient la liste des fichiers sources et cibles. Le chemin du fichier source est relatif, alors que le chemin du fichier cible est absolu.

Output\Biomass\Anomaly\Anomaly_2018.tif Y:\data_dir\data\Biomass\SAH_BiomassAnomaly2018_ef_v0\SAH_BiomassAnomaly2018_ef_v0.geotiff Output\Biomass\Anomaly\Anomaly_2018.tif Y:\data_dir\MetaDownload\BiomassAnomaly2018.tif

Dans cet exemple, le fichier Anomaly_2018.tif sera recopié vers le fichier SAH_BiomassAnomaly2018_ef_v0.geotiff et vers le fichier BiomassAnomaly2018.tif.

6.3 Exécution du programme

L'installation de MATLAB Compiler Runtime R2016a est nécessaire avant l'exécution du programme. Si nécessaire, il convient d'exécuter le programme d'installation : Libs/Utils/MCR_R2016a_win64_installer.exe

L'exécution du programme se fait simplement en double-cliquant sur le fichier exécutable AutoRun.exe. Une fenêtre d'exécution s'ouvre et rappelle les dernières décades intégrées par BioGenerator et HydroGenerator dans le cas où ces programmes sont activés dans le paramétrage.

Dans une première étape, AutoRun va exécuter DeCompessor, puis BioGenerator et HydroGenerator s'ils sont activés dans le paramétrage.

Dans une seconde étape, durant la phase d'attente de nouvelle disponibilité de décades, la fenêtre affiche la date et l'heure.

Tous les jours à minuit, le programme DeCompressor est exécuté même en dehors des périodes de disponibilité de nouvelles décades.

Figure 49 – Fenêtre d'exécution de AutoRun en phase d'attente de nouvelles décades

7 ClearAll

Le programme ClearAll (v1.2) permet d'effacer l'ensemble des fichiers résultats et des fichiers intermédiaires de calcul produits par les programmes DeCompressor, BioGenerator et HydroGenerator.

ClearAll permet également d'effacer, après confirmation, les fichiers compressés directement issus du téléchargement de la base de données source.

<u>Attention :</u> La source de données FTP du VITO des produits spécifiques ACF DMP et NDVI ne stocke pas la série entière mais uniquement les deux dernières années environs. Il est de la responsabilité de l'utilisateur de veiller à la sauvegarde régulière pérenne de ces fichiers originaux par copie manuelle vers un répertoire de sauvegarde. Localement, ces fichiers se trouve dans le répertoire de téléchargement (Data/Download/). Après un vidage de la base de données de téléchargement, pour l'utilisation complète de la source de données FTP, il convient de recopier les fichiers originaux de téléchargement sauvegardés vers le répertoire de téléchargement (Data/Download/).

Il convient, suite à l'exécution de ClearAll, et avant d'exécuter le programme BioGenerator ou HydroGenerator, d'effectuer le lancement du programme DeCompressor (voir section 3.5) afin de restaurer les fichiers de *shapefile* et de décompresser la base de données source.

L'exécution de ClearAll se fait simplement en double cliquant sur le fichier ClearAll.exe. Aucun paramètre n'est nécessaire, mais après confirmation, les fichiers sont effacés de manière irréversible.

8 Conclusion

Des outils sont développés et utilisés par Action Contre la Faim ACF pour son système d'alerte précoce de crise alimentaire sur le Sahel, et pour l'aide au développement et au maintien de l'activité pastorale.

Ces outils se basent principalement sur l'information satellitaire globale et temps réel provenant des acquisitions des satellites SPOT-VEGETATION et PROBA-V et sans interruption depuis avril 1998.

L'utilisation principale est donnée par le module BioGenerator capable de générer des cartes de production de biomasse sur l'Afrique Sub-Saharienne et de calculer une anomalie de cette production. L'indicateur de vulnérabilité VI dérivé de ce calcul d'anomalie permet de mettre en évidence, immédiatement à la fin de la saison des pluies, les zones sensibles, où le pâturage risque d'être insuffisant pour couvrir les besoins des éleveurs durant la saison sèche.

Le module HydroGenerator donne une information relative à la présence en eau de surface, disponible et accessible aux éleveurs pour leurs troupeaux. Un suivi en temps réel de l'état de remplissage des mares et des points d'eau d'intérêt pastoral donne une information pertinente les possibilités d'accueil des troupeaux sur les zones de pâturage en saison sèche.

Enfin, l'utilisation conjointe des informations de la biomasse et de l'eau de surface permet de visualiser les zones non suffisamment pourvues en points d'eau artificiels. Cette information est pertinente dans un but d'aide à l'aménagement de nouveaux forages.

9 Contact

Pour toute demande d'information supplémentaire, ou bien pour rapporter des anomalies de fonctionnement des modules AutoRun, DeCompressor, BioGenerator et HydroGenerator, veuillez-vous adresser directement au concepteur des programmes.

Concepteur : Dr Erwann FILLOL Email : erwann.fillol@gmail.com

10 Bibliographie

d'Andrimont R., J.-F. Pekel, E. Bartholomé, et P. Defourny, 2012, 8 years water bodies monitoring analysis using MODIS over the African continent, Geophysical Research Abstracts Vol. 14, EGU2012-12905-1, 2012 EGU General Assembly 2012

Baret F., Bartholomé E., Bicheron P., Borstlap G., Bydekerke L., Combal B., Derwae J., Geiger B., Gontier E., Grégoire J.-M., Hagolle O., Jacobs T., Leroy M., Piccard I., Samain O. et Van Roey T., 2006, Manuel de l'utilisation VGT4Africa, première édition, 2006, www.vgt4africa.org/PublicDocuments/VGT4AFRICA_manuel_utilisateur.pdf

Breman H. et De Ridder N. Manuel sur les pâturages des pays sahéliens, DLO – Centre de Recherches Agrobiologiques (CABO-DLO)

Eerens H., Wouters K., Buffet D., Oger R., Dehem D., Tychon B., 2000. Use of 1km²resolution imagery in the Belgian Crop Growth Monitoring System (B-CGMS). In: Proceedings VEGETATION 2000, 3-6 April 2000, Space Applications Institute, Joint Research Centre of the European Commission, Lake Maggiore, Italy.

Fillol E., 2007, Mesure de la quantité de biomasse sur la zone Sahélienne Mali-Niger par télédétection, Action Contre la Faim Espagne ACF-E, document technique

Globcover 2009, ESA 2010 and UCLouvain, http://due.esrin.esa.int/page_globcover.php

Gond V., E. Bartholomé, F. Ouattara, A. Nonguierma et L. Bado, Mapping and monitoring small ponds in dryland with the VEGETATION instrument – application to West Africa

Haas E.M., E. Bartholomé, B et Combal., 2009, Time series analysis of optical remote sensing data for the mapping of temporary surface water bodies in sub-Saharan western Africa. Journal of Hydrology 370 (2009) 52–63

Monteith J.L., 1972. Solar radiation and productivity in tropical ecosystems. J. Applied Ecology, 19:747-766.

Myneni R. et Williams D., 1994. On the relationship between fAPAR and NDVI. Remote Sensing of Environment, 19:200-211.

Toutain B. et Lhoste P., 1978. Essai d'estimation du coefficient d'utilisation de la biomasse herbacée par le bétail dans un périmètre sahélien, Rev. Elev. Méd. vét. Pays trop., 1978, 31 (1) : 95-101